Main Article Content

Abstract

In order to study the impact of salt stress (0, 1.5, 3 and 6) ds.m-1 in nutrient’s solution on tomato plant (Solanum lycopersicum L. cv. memory) at different root zone temperature [low (20°C), medium (25°C) and high (30°C)], an experiment was carried at Department of Horticultural, Ferdowsi University of Mashhad, Islamic Republic of Iran. The result showed that low and high root zone heating decreased leaf area, total sugar and phenol content compared to root zone temperature 25°C (optimum), while main branches number, pH, E.C. and anthocyanin of fruit ,increased at high root zone temperature compared to low root zone temperature. Flavonoid increased under the root zone temperature of 20°C in comparison with temperatures 25 and 30°C, and stem diameter was not affected by root zone heating. Furthermore, salt stress at the level of 3 ds.m-1 increased stem diameter, total sugar, pH and EC of fruit, leaf area and phenol content, whereas salt stress at a high level (6 ds.m-1) increased flavonoid content. Besides, anthocyanin content decreased in control and salt stress at 6 ds.m-1 when compared to salt stress at 3 ds.m-1.

Keywords

Root zone temperature Tomato fruit Salt stress

Article Details

How to Cite
Hmiz , D. J. ., & Ithbayyib, I. J. . (2021). Effect of the Root Zone Temperature and Salt Stress on Plant Growth, Main Branches and some other Chemical Characteristics of Tomato Fruit Solanum lycopersicum L. cv. memory. Basrah Journal of Agricultural Sciences, 34(1), 156–170. https://doi.org/10.37077/25200860.2021.34.1.14

References

  1. Abdel-Mawgoud, A., Sassine, Y., El-Behairy, U., Abou-Hadid, A., & El-Abd, S. (2005). Effect of minimum root-zone temperature on the growth and production of greenhouse sweet pepper. Journal of Applied Sciences Research, 1, 72-77. http://www.aensiweb.com/old/jasr/jasr/72-77.pdf
  2. Adebooye, O. C., Schmitz-Eiberger, M., Lankes, C. & Noga, G. J. (2010). Inhibitory effects of sub-optimal root zone temperature on leaf bioactive components, photosystem II (PS II) and minerals uptake in Trichosanthes cucumerina L. Cucurbitaceae. Acta Physiologogaie. Plantarum, 32, 67-73. https://doi.org/10.1007/s11738-009-0379-z
  3. Al-Maskri, A, Al-Kharusi, L., Al-Miqbali, H., & Mumtaz Khan, M. (2010). Effects of salinity stress on growth of lettuce (Lactuca sativa) under closed-recycle nutrient film technique. International Journal of Agriculture and Biology, 12, 377-380. https://squ.pure.elsevier.com/en/publications/effects-of-salinity-stress-on-growth-of-lettuce-lactuca-sativa-un
  4. Al Hassan, M., Fuertes; M. M., Sánchez, F. J. R., Vicente, O., & Boscaiu, M. (2015). Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43, 1-11. https://doi.org/10.15835/nbha4319793
  5. Ali, H. E. M., & Ismail, G. S. M. (2014). Tomato fruit quality as influenced by salinity and nitric oxide. Turkish Journal of Botany, 38, 122-129. https://doi.org/10.3906/bot-1210-44
  6. Borghesi, E., González-Miret, M. L., Escudero-Gilete, M. L., Malorgio, F., Heredia, F. J., & Meléndez-Martínez, A. J. (2011). Effects of salinity stress on carotenoids, anthocyanins, and color of diverse tomato genotypes. Journal of Agriculture. Food Chem., 59, 11676-11682. https://doi.org/10.1021/jf2021623
  7. Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7, 1085-1095. https://doi.org/10.1105/tpc.7.7.1085
  8. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T.& Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical. Chemistry., 28, 350-356. https://doi.org/10.1021/ac60111a017
  9. Ekinci, M., Yildirim, E., Dursun, A., & Turan, M. (2012). Mitigation of salt stress in lettuce (Lactuca sativa L. var. Crispa) by seed and foliar 24-epibrassinolide treatments. American Society for Horticultural Science, 47, 631-636. https://doi.org/10.21273/HORTSCI.47.5.631
  10. Giannakoula, A. E, & Ilias, I. (2013). The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mill.). Archives of Biological Sciences Belgrade, 65, 611-620. https://doi.org/10.2298/ABS1302611G
  11. Holiman, P. C., Hertog, M. G, & Katan, M. B. (1996). Analysis and health effects of flavonoids. Food Chemistry, 57, 43-46. https://doi.org/10.1016/0308-8146(96)00065-9
  12. Krauss, S., Schnitzler, W. H., Grassmann, J., & Woitke, M. (2006). The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. Jornal Agriculture Food Chemistry, 54, 441-448. https://doi.org/10.1021/jf051930a
  13. Leja, M., Kamińska, I., Kramer, M., Maksylewicz-Kaul, A., Kammerer, D., Carle, R., & Baranski, R. (2013). The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods for Human Nutrition,, 68, 163-170. https://doi.org/10.1007/s11130-013-0351-3
  14. Maggio, A., De Pascale, S., Angelino, G., Ruggiero, C., & Barbieri, G. (2004). Physiological response of tomato to saline irrigation in long-term salinized soils. European Jourmal of Agronomy, 21, 149-159. https://doi.org/10.1016/S1161-0301(03)00092-3
  15. Mes, P. J, Boches, P., Myers, J. R, & Durst, R. (2008). Characterization of tomatoes expressing anthocyanin in the fruit. American Society for Horticultural Science,, 133, 262-269. https://doi.org/10.21273/JASHS.133.2.262
  16. Saito, T.,& Matsukura, C. (2015). Effect of Salt Stress on the Growth and Fruit Quality of Tomato Plants Pp: 3-16 In Kanayama, Y. & Kochetov, A. (Eds.). Abiotic Stress Biology in Horticultural Plants. Springer, Tokyo: 229pp. https://doi.org/10.1007/978-4-431-55251-2
  17. Sakamoto, M., & Suzuki, T. (2015a). Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). American Journal of Plant Sciences, 6, 2350-2360. https://doi.org/10.4236/ajps.2015.614238
  18. Sakamoto, M., & Suzuki, T. (2015b). Elevated root-zone temperature modulates growth and quality of hydroponically grown carrots. Agricultural Sciences 6, 749-757. https://doi.org/10.4236/as.2015.68072
  19. Suwa, R., Nguyen, N. T., Saneoka, H., Moghaieb, R., & Fujita, K. (2006). Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Sciences and Plant Nutrition., 52, 243-250.https://doi.org/10.1111/j.1747-0765.2006.00024.x
  20. Suwa, R., Fujimaki, S., Suzui, N., Kawachi, N., Ishii, S., Sakamoto, K., & Moghaieb, R. E. (2008). Use of positron-emitting tracer imaging system for measuring the effect of salinity on temporal and spatial distribution of 11 C tracer and coupling between source and sink organs. Plant Science, 175, 210-216. https://doi.org/10.1016/j.plantsci.2008.03.022
  21. Toor, R. K., & Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Research International, 38, 487-494. https://doi.org/10.1016/j.foodres.2004.10.016
  22. Wagner, G., & Wüthrich, K. (1979). Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. Journal Molecular Biology, 130, 31-37. https://doi.org/10.1016/0022-2836(79)90550-3
  23. Yan, Q.-Y., Duan, Z.-Q.,Mao, J.-D., Xun, L., & Fei, D. (2013). Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response. Journal of Integrative Agriculture, 12, 1450-1460. https://doi.org/10.1016/S2095-3119(13)60549-3