Main Article Content

Abstract

Biosynthesis of silver nanoparticles (AgNPs) from plant extracts is considered one of the green chemistry methods, as this method is characterized by ease, fast and low cost to manipulate. Interestingly, AgNPs have an important role, especially in nano-medicine.  Using AgNPs for cancer therapy are an affordable way to control tumor growth and constitute a choice strategy to fight cancer cells. First type of conventional cancer treatment is surgical treatment then radiation and chemotherapy. However, these treatments may work for some cancer subtypes, and have various side effects, in most cases, with high doses. In this study, silver nanoparticles (AgNPs) were biosynthesized using Dodonaea viscosa leaves extract. The formation of these particles was confirmed through the color change, UV-Visible Spectrophotometer displaying at 463nm.While the particles characterization was done by Surface Plasmon Resonance (SPR) band and Fourier Transform Infra-Red (FT-IR) spectroscopy which revealed the effective functional groups that have ability to bio-reduction silver ion Ag+. In addition, X-ray diffraction (XRD) determined the crystal structure of silver nanoparticles, as shown by the peaks at 2θ values of 38.1874, 46.2491, 57.5409 and76. 8313ο.The atomic force microscopy (AFM) analysis showed the size and the surface properties of biosynthesized nanoparticles, and the silver nanoparticles had an average size of 60.22 nm. Finally, scanning electron microscopy (SEM) showed spherical shape of AgNPs and having different average diameter D1 (21.10), D2 (21.39) and D3 (11.86) nm. In vitro, the synthesized AgNPs exhibited potential anti-tumor activities against human lung cancer (A549) and ovarian cancer (SK-OV-3) carcinoma cell lines in a dose-dependent manner with IC50 of 1.73 and 2.23µg.ml-1, respectively. Our results showed the promising use of AgNPs as an alternative treatment for cancer cells directly and selectively on A549 cell line at concentrations (2.000, 1.699, 1.398 and 1.301 μg /mL).

Keywords

Silver nanoparticles Dodonaea viscosa Anti-tumors Biosynthesis

Article Details

How to Cite
Al-Musawi , Z. F. H. ., & Al-Saadi, N. H. M. . (2021). Antitumor Activities of Biosynthesized Silver Nanoparticles using Dodonaea viscosa (L.) Leaves Extract. Basrah Journal of Agricultural Sciences, 34(2), 42–59. https://doi.org/10.37077/25200860.2021.34.2.04

References

  1. Alasmari, A. (2020). Phytomedicinal potential characterization of medical plants (Rumex nervosus and Dodonaea viscose). Journal of Biochemical Technology, 11, 113-121.‏ https://jbiochemtech.com/en/article/phytomedicinalpotential-characterization-of-medical-plants rumex-nervosus-and-dodonaea-viscose
  2. Abdelghany, T., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M., Magdah, A. G., Helmy, E. A., & Mabrouk, A. S. (2018). Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. BioNanoScience, 8, 5-16. https:// doi:10.1007/s12668-017-0413-3
  3. Annamalai P, Balashanmugam P, Kalaichelvan P. (2018). Biogenic synthesis silver nanoparticles using Peltophorum pterocarpum leaf extracts and its antimicrobial efficacy against selective pathogens. International Journal of Applied Pharmaceutics. 10, 112-118. https://doi:10.22159/ijap.2018v10i6.28573
  4. AshaRani, P. V., Low Kah Mun, G., Hande, M. P., and Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279-290. https://doi.org/10.1021/nn800596w
  5. Balashanmugam, P., & Kalaichelvan, P. T. (2014). Biogenic synthesis of silver nanoparticles from Dodonaea viscosa Linn. and its effective antibacterial activity. Scientific Transactions in Environment and Technovation, 8, 67-71.‏ http://doi: 10.20894/STET.116.008.002.003
  6. Barua, S., Konwarh, R., Bhattacharya, S. S., Das, P., Devi, K. S. P., Maiti, T. K., & Karak, N. (2013). Non-hazardous anticancerous and antibacterial colloidal ‘green’silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 105, 37-42. http://doi:10.1016/j.colsurfb.2012.12.015
  7. Bedlovičová, Z., & Salayová, A. (2017). Green-Synthesized Silver Nanoparticles and Their Potential for Antibacterial Applications. 73-94. In Kırmusaoğlu, S., (Editor). Bacterial Pathogenesis and Antibacterial Control. 154pp. http://dx.doi.org/10.5772/intechopen.72138
  8. Bethu, M. S., Netala, V. R., Domdi, L., Tartte, V., & Janapala, V. R. (2018). Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism. Artificial Cells, Nanomedicine, and Biotechnology, 46, 104-114.‏ https://doi.org/10.1080/21691401.2017.1414824
  9. Birla, S. S., Gaikwad, S. C., Gade, A. K., and Rai, M. K. (2013). Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. The Scientific World Journal, 013. https://doi.org/10.1155/2013/796018
  10. Daniel, S. K., Vinothini, G., Subramanian, N., Nehru, K., & Sivakumar, M. (2013). Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. Journal of Nanoparticle Research, 15, 1319.‏https:// doi: 10.1007/s11051-012-1319-1
  11. Flaih, L. S., & Al-Saadi, N. H. (2020). Characterization and clinical application of silver nanoparticles synthesized from Cassia Obtusifolia leaves extract. Plant Archives, 20, 1082-1088.‏ https://www.researchgate.net/publication/342851985
  12. Gasque, K. C. D. S., Al-Ahj, L. P., Oliveira, R. C., & Magalhães, A. C. (2014). Cell density and solvent are critical parameters affecting formazan evaluation in MTT assay. Brazilian Archives of Biology and Technology, 57, 381-385. http://dx.doi.org/10.1590/S1516-89132014005000007
  13. Gomaa, E. Z. (2017). Antimicrobial, antioxidant and antitumor activities of silver nanoparticles synthesized by Allium cepa extract: a green approach. Journal of Genetic Engineering and Biotechnology, 15, 49-57. http://dx.doi.org/10.1016/j.jgeb.2016.12.002
  14. Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K. S., Esakkirajan, M., & Benelli, G. (2016). Green synthesis of silver, gold, and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microbial Pathogenesis, 101, 1-11. https://doi: 10.1016/j.micpath.2016.10.011
  15. Gurunathan, S., Jeong, J.-K., Han, J. W., Zhang, X.-F., Park, J. H., & Kim, J.-H. (2015). Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale research letters, 10, 1-17. https:// doi:10.1186/s11671-015-0747-0
  16. Hamadi, S. S. (2017). Chemical study of Dodonaea viscosa planting in Iraq. International Journal of Advances in Chemical Engineering, & Biological Sciences, 4, 121-125. https://doi.org/10.15242/IJACEBS.C0317025
  17. Krishnaraj, C., Muthukumaran, P., Ramachandran, R., Balakumaran, M., & Kalaichelvan, P. (2014). Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnology Reports, 4, 42-49. https://doi:10.1016/j.btre.2014.08.002
  18. Lakshmanan, G., Sathiyaseelan, A., Kalaichelvan, P., & Murugesan, K. (2018). Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala International Journal of Modern Science, 4, 61-68. https://doi.org/10.1016/j.kijoms.2017.10.007
  19. Mahyoub, J. A. (2019). Biological effects of synthesized silver nanoparticles using Dodonaea viscosa leaf extract against Aedes aegypti (Diptera: Culicidae) Journal of Entomology and Zoology Studies, 7, 827-832.‏ https://www.entomoljournal.com/archives/2019/vol7issue1/PartM/7-1-97-583.pdf
  20. Mohammed, A. E., Al-Qahtani, A., Al-Mutairi, A., Al-Shamri, B., & Aabed, K. (2018). Antibacterial and cytotoxic potential of biosynthesized silver nanoparticles by some plant extracts. Nanomaterials, 8, 382. https://doi.org/10.3390/nano8060382
  21. Moosa, A. A., Ridha, A. M., & Al-Kaser, M. (2015). Process parameters for green synthesis of silver nanoparticles using leaves extract of Aloe vera plant. International Journal of Multidisciplinary and Current Research, 3, 966-975. http://ijmcr.com
  22. Muniyappan, N., & Nagarajan, N. (2014). Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochemistry, 49, 1054-1061. https://doi.org/10.1016/j.procbio.2014.03.015
  23. Netala, V. R., Kotakadi, V. S., Domdi, L., Gaddam, S. A., Bobbu, P., Venkata, S. K., &. Tartte, V. (2016). Biogenic silver nanoparticles: efficient and effective antifungal agents. Applied Nanoscience, 6, 475-484. https:// doi:10.1007/s13204-015-0463-
  24. Oh, K. H., Soshnikova, V., Markus, J., Kim, Y. J., Lee, S. C., Singh, P., & Shim, Y. J. (2018). Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artificial Cells, Nanomedicine, and Biotechnology, 46, 599-606.https://doi.org/10.1080/21691401.2017.1332636
  25. Otunola, G. A., & Afolayan, A. J. (2018). In vitro antibacterial, antioxidant and toxicity profile of silver nanoparticles green-synthesized and characterized from aqueous extract of a spice blend formulation. Biotechnology & Biotechnological Equipment, 32, 724-733. https://doi.org/10.1080/13102818.2018.1448301
  26. Patil Shriniwas, P. (2017). Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochemistry and Biophysics Reports, 10, 76.‏ https://doi: 10.1016/j.bbrep.2017.03.002
  27. Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., & Naseem, S. (2016). Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6, 74. https://doi.org/10.3390/nano6040074
  28. Revathi, N., and Dhanaraj, T. (2019). Synthesis of silver nanoparticles from Dodonaea angustifolia leaf extract and evaluation of its anti-inflammatory activity. Pramana Research Journal, 9, 1118-1126. https://www.pramanaresearch.org/gallery/prj-p1138.pdf
  29. Rocchetti, G., Lucini, L., Chiodelli, G., Giuberti, G., Montesano, D., Masoero, F., & Trevisan, M. (2017). Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Research International, 100, 69-77. https://doi.org/10.1016/j.foodres.2017.08.031
  30. Rojas, A., Cruz, S., Ponce-Monter, H., & Mata, R. (1996). Smooth muscle relaxing compounds from Dodonaea viscosa5. Planta medica, 62, 154-159. hptts://doi:10.1055/s-2006-957840
  31. Saranya, K., & Divyabharathi, U. (2019). Gas Chromatography and mass Spectroscopic Analysis of Phytocompounds in Dodonaea viscosa leaves extract. Pramana Research Journal, 9, 26-35. https://www.pramanaresearch.org/gallery/prj-p1302.pdf
  32. Singh, H., Du, J., & Yi, T.-H. (2017). Green and rapid synthesis of silver nanoparticles using Borago officinalis leaf extract: anticancer and antibacterial activities. Artificial cells, Nanomedicine, and Biotechnology, 45, 1310-1316. https://doi.org/10.1080/21691401.2016.1228663
  33. Srinivasan, P., Sudhakar, S., Sengottaiyan, A., Subramani, P., Sudhakar, C., & Thiyagarajan, K. M. P. (2014). Green synthesis of silver nanoparticles using Cassia auriculata flower extract and its antibacterial activity. International Journal of Advanced Science and Engineering, 1, 42-46. https://www.mahendrapublications.com
  34. Srinivasan, S., & Priya, V. (2019). Phytochemical screening and GC-MS analysis of Cyperus dubius, Rottb. (Cyperaceae). Journal of Medicinal Plants, 7, 89-98. https://www.plantsjournal.com/archives/?year=2019&vol=7&issue=2&part=B&ArticleId=961
  35. Sriranjani, R., Srinithya, B., Vellingiri, V., Brindha, P., Anthony, S. P., Sivasubramanian, A., & Muthuraman, M. S. (2016). Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. Journal of Molecular Liquids, 220, 926-930. https://doi:10.1016/j.molliq.2016.05.042
  36. Vivek, R., Thangam, R., Muthuchelian, K., Gunasekaran, P., Kaveri, K., & Kannan, S. (2012). Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochemistry, 47, 2405-2410. https://doi:10.1016/j.procbio.2012.09.025
  37. Wang, D., Markus, J., Wang, C., Kim, Y.-J., Mathiyalagan, R., Aceituno, V. C., & Yang, D. C. (2017). Green synthesis of gold and silver nanoparticles using aqueous extract of Cibotium barometz root. Artificial cells, Nanomedicine, and Biotechnology, 45, 1548-1555. https://doi.org/10.1080/21691401.2016.1260580
  38. Waseda, Y., Matsubara, E., & Shinoda, K. (2011). X-ray diffraction crystallography: introduction, examples and solved problems: Springer Science & Business Media. 310pp. https://doi:10.1007/978-3-642-16635-8
  39. Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., & Panahi, Y. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: A review. Artificial cells. Nanomedicine, and Biotechnology, 46, S336-S343. https://doi.org/10.1080/21691401.2018.1492931
  40. Zafar, S., Ashraf, A., Ashraf, M. Y., Asad, F., Perveen, S., Zafar, M. A., & Shahzadi, A. (2018). Preparation of Eco-friendly Antibacterial Silver Nanoparticles from Leaf Extract of Ficus benjamina. Biomedical Journal, 9, 7260-7264. https://doi:10.26717/BJSTR.2018.09.001829
  41. Zhang, X. F., Liu, Z. G., Shen, W., & Gurunathan, S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International Journal of Molecular Sciences, 17, 1534 https://doi.org/10.3390/ijms17091534