Main Article Content


Employing DNA markers allowed determining genetic diversity and relationships amongst five apricot genotypes. In this study, two relative gene expressions pertaining to ParARF3 gene, which could be distinguished from the genotypes that were exposed to various concentrations of marine alga treatments. As per our results, screening of seven primers with the DNA of 5 apricot genotypes was done, and six primers were generated while the primer OPN–16 gave negative results. The total quantity of fragments generated by 6 primers was 80 at an average of 13.33 fragments ̸primer. The highest unique percentage band depicted in U-17 touched 23%, and the total number of polymorphic bands touched 17 fragments with the average reaching 2.83 fragments ̸primer. The number of monomorphic lied in the range of 5 to 10, with a total of 47 monomorphic. Primer M 32 yielded the highest number of monomorphic bands reaching 10. Between Zaghenia and Zinni, a maximum genetic distance value of 0.8 was reached with less similarity value of 20%. A minimum genetic distance value of 0.44721 was noted between Kaisy and Baia while the high similarity value touched 55.3%. According to the cluster tree analysis, the genotypes were generally split into two key groups: A and B. The Zinni group, which included one apricot genotype, showed genetic similarity of 20% with the other genotypes present in B group. The B group was split into two sub-clusters B1 and B2 and the genetic similarity reached 44%. The ParARF3 relative gene expression pertaining to Zinni genotypes was second as well as convergent with that of gene expression for Zaghenia genotype results. Baia and Kaisy genotypes lied in between the lowest and highest ParARF3 value gene expression exposed to Marine Alga. These outcomes showed that RAPD markers offer an effectual alternative for the plant species genetic characterisation.


Plant DNA RAPD markers Genetic diversity Gene expression

Article Details

How to Cite
Al-Janabi, A. S. A. ., & Alhasnawi, A. N. . (2021). Determination of Genetic Diversity Based on RAPD molecular Marker and ParARF3 Gene Expressions in some Apricot Genotypes in Iraq. Basrah Journal of Agricultural Sciences, 34(2), 60–74.


  1. Abd El-Moniem, E. A. & Abd-Allah, A. S. E. (2008). Effect of green alga cells extract as foliar spray on vegetative growth yield and berries quality of superior grapevines. American-Eurasian Journal of Agricultural & Environmental Sciences, 4, 427-433.
  2. Alhasnawi, A. N. (2019). β-Glucan-Mediated Alleviation of NaCl Stress in Ocimum basilicum L. in Relation to the Response of Antioxidant Enzymes and Assessment DNA Marker. Journal of Ecological Engineering, 20, 90-99.
  3. Alhasnawi, A. N., Kadhimi, A. A., Isahak, A., Mohamad, A., Ashraf, M. F., Doni, F., Yusoff, W. M., & Che Radziah, Z. (2017). DNA Isolation and Optimization of ISSR-PCR Reaction System in Oryza sativa L. International Journal on Advanced Science, Engineering and Information Technology. 7, 2264- 2272.
  4. Al Khazraji, H. A. K., Abd, A. M., & Abdulla, A. A. (2021). The determination of the genetic distance of various snake melon Cucumis melo var. flexuosus cultivars using inter simple sequence repeat technique (ISSR). Basrah Journal of Agricultural Sciences 34, 111-123.
  5. Barakat, M. N, El-Sabagh, A. S, Etman, A. A., & Genaidy, E. A. A. (2012). Genetic analysis of some apricot c.v canino genotypes using RAPD-PCR technique as a major molecular marker of genetic differentiation among apricot clones. American-Eurasian Journal of Agricultural & Environmental Sciences, 12, 139-143.
  6. Bhadkaria, A., Gupta, N., Narvekar, D. T., Bhadkariya, R., Saral, A., Srivastava, N., Koul, K. K., & Bhagyawant, S. S. (2020). ISSR-PCR approach as a means of studying genetic variation in moth bean (Vigna aconitifolia (Jacq.) Maréchal). Biocatalysis and Agricultural Biotechnology, 30, 101827.
  7. Brakea, M., Migdadi, H., Al-Gharaibeh, M., Ayoub, S., Haddad, N., & El Oqlah, A. (2014). Characterization of Jordanian olive cultivars (Olea europaea L.) using RAPD and ISSR molecular markers. Scientia Horticulturae, 176, 282–289.
  8. Cao, J., Li, G., Qu, D., Li, X. & Wang, Y. (2020). Into the seed: auxin controls seed development and grain yield. International Journal of Molecular Sciences, 21, 1662. https://doi:10.3390/ijms21051662
  9. Chiou, C. Y., Shih, H. C., Tsai, C. C., Jin, X. L., Ko, Y. Z., Mantiquilla, J. A., Weng I., & Chiang, Y. C. (2020). The genetic relationships of Indian jujube (Ziziphus mauritiana Lam.) cultivars using SSR markers. Heliyon, 6, e05078.
  10. Cmejlova, J., Rejlova, M., Paprstein, F., & Cmejla, R. (2020). A new one-tube reaction kit for the SSR genotyping of apple (Malus domestica Borkh.). Plant Science, 110768.
  11. Erdogan-Orhan, I., & Kartal, M. (2011). Insights into research on phytochemistry and biological activities of Prunus armeniaca L. (apricot). Food Research International, 44, 1238–1243.
  12. Guerriero, R., & Watkins, R. (1984). Revised descriptor list for apricot (Prunus armeniaca). IBPGR Secretariat, Rome, CEC Secretariat, Brüssels. 36 pp.
  13. Iannelli, D., Cottone, C., Viscardi, M., D’Apice, L., Capparelli, R., & Borselli, M. (1998). Identification of lemon by flow cytometry and RAPD markers. International Journal of Plant Science, 159, 864-869.
  14. Kalapchieva, S., Kosev, V., & Vasileva, V. (2020). Genetic and phenotypic assessment of garden peas (Pisum sativum L.) genotypes. Basrah Journal of Agricultural Sciences, 33, 107-121.
  15. Khor, S. P., Yeow, L. C., Poobathy, R., Zakaria, R., Chew, P. L., & Subramaniam, S. (2020). Droplet-vitrification of Aranda Broga Blue orchid: Role of ascorbic acid on the antioxidant system and genetic fidelity assessments via RAPD and SCoT markers. Biotechnology Reports 26, e00448.
  16. Koller, B., Lehmann, A., McDermott, J. M., & Gessler, C. (1993). Identification of apple cultivar using RAPD markers. Theoretical and Applied Genetics 85, 901-904.
  17. Krichen, L., Mnejja, A., Aru, P., Marrakchi, M., & Trifi-Farah, N. (2006) Use of microsatellite polymorphisms to develop an identification key for Tunisian apricots. Genetic Resources and Crop Evolution, 53, 1699-1706.
  18. Kumar, S., Tamura, K., Jakobsen, I. B., & Nei, M. (2001). MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245.
  19. Layne, R. E. C., Bailey, C. H., & Hough, L. F. (1996). Apricots: 79-111. In Janick, J. & Moore, J. M. (Editors). Fruit Breeding, Vol. 1: Tree and Tropical Fruits, John Willey and Sons, New York. 632pp.
  20. Liu, J., Deng, J. L., & Tiana, Y. (2020). Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. Phytochemistry, 171, 112226.
  21. Maghuly, F., Borroto F. E., Ruthner, S., Pedryc, A., & Laimer, M. (2005). Microsatellite variability in apricot (Prunus armeniaca) reflects their geographical origin and breeding history. Tree Genetics & Genomes, 1, 151-165.
  22. Mariniello, L., Sommella, M. G., Sorrentino, A., Forlani, M., & Porta R. (2002). Identification of Prunus armeniaca cultivar by RAPD and SCAR markers. Biotechnology Letters 24, 749-755.
  23. Morales, R. G. F., Resende, J. T. V., Faria, M. V., Andrade, M. C., Resende, L. V., Delatorre, C. A., & Silva, P. R. (2011). Genetic similarity among strawberry cultivars assessed by RAPD and ISSR markers. Scientia Agricola, 68, 665–670.
  24. Nei, M., & Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceeding of the National Academy of Sciences of the USA 76, 5269-5273.
  25. Rao, G. K., Kapadia, C., Patel, N. B., Desaia, K. D., & Murthy, P. N. N. (2020). Genetic diversity analysis of greater yam (Dioscorea alata L.) genotypes through RAPD and ISSR markers. Biocatalysis and Agricultural Biotechnology, 23, 101495.
  26. Rohlf, F. J. (2000). NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.1. Exeter Software Setauket. New York. 42pp.
  27. Romero, C., Prdryc, A., Munoz, V., Llacer, G., & Badenes, M. L. (2003). Genetic diversity of different apricot geographical groups determined by SSR markers. Genome, 46, 244-252.
  28. Rowland, L. J., & Levi, A. (1994). RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. ellottii). Theoretical and Applied Genetics 87, 863-868.
  29. Shangguan, L., Wang, Y., Li, X., Wang, Y., Song, C., & Fang J. (2012). Identification of selected apricot cultivars using RAPD and EST-SSR markers. International Journal of Cytology, Cytosystematics and Cytogenetics, 65, 130–139.
  30. Sirijan, M., Drapal, M., Chaiprasart, P., & Fraser, P. D. (2020). Characterisation of Thai strawberry (Fragaria ananassa Duch.) cultivars with RAPD markers and metabolite profiling techniques. Phytochemistry, 180, 112522.
  31. Spinelli, F., Giovanni, F., Massimo, N., Mattia, S., & Guglielmo, C. (2009). Perspectives on the use of a sea weed extract to moderate the negative effects of alternate bearing in apple trees. Journal of Horticultural Science and Biotechnology 17, 131-137.
  32. Uzuni, A., Osman, G., Ubeyit, S., Mustafa, B., Kadir ,U., & Yilmaz, K. U. (2010). SRAP based genetic analysis of some apricot cultivars. Romanian Biotechnological Letters, 15, 5396- 5404.
  33. Volkova, P. A., Bog, M., Zablocka, B., & Oberprieler, C. (2020). Elevation does not matter? Genome screening using AFLP fails to reveal selection along elevational transects: a case study of Caucasian Primula vulgaris Huds. (Primulaceae). Flora, 151726.
  34. Wang, X., Li, L., Zhao, J., Li, F., Guo W., & Chen X. (2017). Effects of different preservation methods on inter simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) molecular markers in botanic samples. Comptes Rendus Biologies, 340, 204-213.
  35. Welsh, J., Peterson, C., & McClelland, M. (1991). Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Research, 19, 303-306.
  36. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531-6535.
  37. Xiang, L., Li, X. L., Wang, X. S., Yang, J., Lv, K., Xiong, Z. Q., Chen, F. Q., & Huang, C. M. (2020). Genetic diversity and population structure of Distylium chinense revealed by ISSR and SRAP analysis in the Three Gorges Reservoir Region of the Yangtze River, China. Global Ecology and Conservation, 21, e00805.
  38. Yilmaz, K. U., & Paydas-Kargi, S. (2012). A new morphological trait for apricot characteristics. Acta Horticulturae 862, 83-84.
  39. Yuan, Z., Chen, X., He, T., Feng, J., Feng, T., & Zhang C. (2007). Population genetic structure in apricot (Prunus armeniaca L.) cultivars revealed by fluorescen-AFLP markers in Southern Xinjiang, China. Journal of Genetics and Genomics, 37, 1037-1047.
  40. Zhang, X., & Schmidt, R. E. (1999). Biostimulating turfgrasses. Ground Naintenance 34, 14-32.
  42. Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 2, 49-64. https://