Main Article Content

Abstract

This study aims to prepper stable thermodynamically dilutable nanoemulsion formulation of Beauveria bassiana with the lowest surfactant concentration that could improve its solubility stability. Formulations were prepared from oil in the water nanoemulsion region of phase diagrams subjected to thermodynamic stability tests. We found propanetriol was the highest germination rate at 5% and 10% concentration, 46.66 and 53.33%, respectively. Castor oil achieved a 43.00 germination rate at 1%. Tween 80 gave 54.33 % germination rate at 10%. While Tween 20 showed a 48 % germination rate at 5%. At the concentration, 1% Term 1284 gave 43.33% rate germination. Nanoemulsion composed of propanetriol and nonionic surfactants, with a mean particle size ranging from 25.08 to 75.35 nm, was formulated for various concentrations of the oils and surfactants. Water in oil emulsion was prepared using propanetriol oil, Tween 20, Tween 80, Term 1284, and water. Nanoemulsion of 25.08, 33.75, and 75.35 nm size was obtained at a 45: 15 % ratio of oil and surfactant, and it was found to be stable. The larger droplet size 75.35 nm of formulation Tween 20 and the smaller size was 25.08 nm in the formulation of Term 1284. The higher viscosity value was 16 mPas of formulation Tween 80, and the lowest value was 7.80 in the formulation of Term 1284. To demonstrate the possible employment of these systems, they were used to formulate a nanoformulation pesticide.

Keywords

Formulation Nanoemulsion Surfactant Entomopathogen Beauveria bassiana

Article Details

How to Cite
Alhilfi, A. Z. A. ., Swadi, W. A. ., & Ahmed, A. M. . (2021). Preparation and Characterization of Oil Nanoemulsion Formulations of Beauveria bassiana (Bals.-Criv.) . Basrah Journal of Agricultural Sciences, 34(2), 75–87. https://doi.org/10.37077/25200860.2021.34.2.06

References

  1. Abd, A. M., Altemimy, I. H. ., & Altemimy, H. M. . (2020). Evaluation of the effect of nano-fertilization and disper osmotic in treating the salinity of irrigation water on the chemical and mineral properties of date palm (Phoenix dactylifera L.). Basrah Journal of Agricultural Sciences, 33, 68–88. https://doi.org/10.37077/25200860.2020.33.1.06
  2. Abd-Elsalam, K. A., Al-Dhabaan, F. A., Alghuthaymi, M., Njobeh, P. B., & Almoammar, H. (2019). Nanobiofungicides: Present concept and future perspectives in fungal control. 315-351. In Koul, O. (Editor). Nano-Biopesticides Today and Future. Academic Press 485pp. doi.org/10.1016/B978-0-12-815829-6.00014-0
  3. Aw, K., & Hue, S. M. (20 17). Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. Journal of fungi (Basel, Switzerland), 3, 30. doi.org/10.3390/jof3020030
  4. Azeem, A., Rizwan, M., Ahmad, F. J., Iqbal, Z., Khar, R. K., Aqil, M., & Talegaonkar, S. (2009). Nanoemulsion components screening and selection: a technical note. Aaps Pharmscitech, 10, 69-76. doi: 10.1208/s12249-008-9178-x
  5. Baboota, S., Shakeel, F., Ahuja, A., Ali, J., & Shafiq, S. (2007). Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharmaceutica, 57, 315-332./doi.org/10.2478/v10007-007-0025-5
  6. Bernardi, D. S., Pereira, T. A., Maciel, N. R., Bortoloto, J., Viera, G. S., Oliveira, G. C., & Rocha-Filho, P. A. (2011). Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of Nanobiotechnology, 9,1-9. doi.org/10.1186/1477-3155-9-44
  7. Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. International Journal of Pharmaceutics, 280, 241-251. doi.org/10.1016/j.ijpharm.2004.05.016
  8. Braga, G. U., Flint, S. D., Messias, C. L., Anderson, A. J., & Roberts, D. W. (2001). Effects of UVB irradiance on conidia and germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A study of Reciprocity and Recovery. Photochemistry and Photobiology, 73, 140-146. doi: 10.1562/0031-8655(2001)073<0140:eouioc>2.0.co;2.
  9. Chen, F., Wang, Y., Zheng, F., Wu, Y., & Liang, W. (2000). Studis on cloud point of agrochemical microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 175, 257-262. doi.org/10.1016/S0927-7757(00)00505-7
  10. Dannon, H. F., Dannon, A., Dourokpindou, O. K., Zinsou, A., Houndete, A. T., Toffa-Mehinto, J., Elegbede, I. A., Olou, B. D., & Tamò, M. (2020). Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. Journal of Cotton Research, 3, 1-21 https://doi.org//10.1186/s42397-020-00061-5
  11. Du, Z., Wang, C., Tai, X., Wang, G., & Liu, X. (2016). Optimization and characterization of biocompatible oil-in-water nanoemulsion for pesticide delivery. ACS Sustainable Chemistry & Engineering, 4, 983-991. https://doi.org/10.1021/ACSSUSCHEMENG.5B01058
  12. Forgiarini, A., Esquena, J., Gonzalez, C., & Solans, C. (2001). Formation of nanoemulsions by low-energy emulsification methods at constant temperature. Langmuir, 17, 2076-2083. doi.org/10.1021/la001362n
  13. Gadhave, A. D., & Waghmare, J. T. (2014). A short review on microemulsion and its application in extraction of vegetable oil. : International Journal of Research in Engineering and Technology , 3, 147-158. https://doi.org/10.15623/IJRET.2014.0309022
  14. Green, D. L., Lin, J. S., Lam, Y. F., Hu, M. C., Schaefer, D. W., & Harris, M. T. (2003). Size, volume fraction, and nucleation of Stober silica nanoparticles. Journal of Colloid and Interface Science, 266, 346-358. https://doi.org/10.1016/s0021-9797(03)00610-6
  15. Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12, 2826-2841. https://doi.org/doi.org/10.1039/C5SM02958A
  16. Hatcher, L., & O'Rourke, N. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling. Sas Institute.
  17. Ibrahim, L., Butt, T., Beckett, A., & Clark, S. (1999). The germination of oil-formulated conidia of the insect pathogen, Metarhizium anisopliae. Mycological Research, 103, 901-907. https://doi.org/10.1017/S0953756298007849
  18. Jackson, M. A., Dunlap, C. A., & Jaronski, S. T. (2010). Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl, 55, 129-145. https://doi.org/10.1007/s10526-009-9240-y
  19. Jin, X., Streett, D. A., Dunlap, C. A., & Lyn, M. E. (2008). Application of hydrophilic–lipophilic balance (HLB) number to optimize a compatible nonionic surfactant for dried aerial conidia of Beauveria bassiana. Biological Control, 46, 226-233. https://doi.org/10.1016/j.biocontrol.2008.03.008
  20. Koul, O. (Ed.). (2019). Nano-biopesticides today and future perspectives. Journal of Environmental Science and Health, Part B, 54, 801–802. https://doi.org/10.1080/03601234.2019.1670480
  21. Mishra, S., Kumar, P., & Malik, A. (2013). Evaluation of Beauveria bassiana spore compatibility with surfactants. International Journal of Medical and Health Sciences, 7, 8-12. https://doi.org/10.5281/zenodo.1059601
  22. Morales, D., Gutiérrez, J. M., Garcia-Celma, M. J., & Solans, Y. C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation. Langmuir, 19, 7196-7200. https://doi.org/10.1021/la0300737
  23. Muniz, E. R., Bedini, S., Sarrocco, S., Vannacci, G., Mascarin, G. M., Fernandes, É. K., & Conti, B. (2020a). Carnauba wax enhances the insecticidal activity of entomopathogenic fungi against the blowfly Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 174, 107391. doi.org/10.1016/j.jip.2020.107391
  24. Muniz, E. R., Paixão, F. R. S., Barreto, L. P. et al. (2020b). Efficacy of Metarhizium anisopliae conidia in oil-in-water emulsion against the tick Rhipicephalus microplus under heat and dry conditions. BioControl 65, 339–351. https://doi.org/10.1007/s10526-020-10002-5
  25. Mwamburi, L. A., Laing, M. D., & Miller, R. M. (2015). Effect of surfactants and temperature on germination and vegetative growth of Beauveria bassiana. Brazilian Journal of Microbiology, 46, 67-74. https://doi.org/10.1590/S1517-838246120131077
  26. Pal, N., Kumar, S., Bera, A., & Mandal, A. (2019). Phase behaviour and characterization of microemulsion stabilized by a novel synthesized surfactant: Implications for enhanced oil recovery. Fuel, 235, 995-1009. https://doi.org/10.1016/j.fuel.2018.08.100
  27. Parsi, E., & Salabat, A. (2020). Comparison of O/W and IL/W microemulsion systems as potential carriers of sparingly soluble celecoxib drug. Journal of Solution Chemistry, 49, 68-82. https://doi.org/10.1007/s10953-019-00940-9
  28. Ribeiro R. C., Barreto S. M., Ostrosky, E. A., da Rocha-Filho, P. A., Veríssimo, L M., Ferrari, M. (2015). Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules, 20, 2492-509. https://doi.org/10.3390/molecules20022492.
  29. Rodrigues, E. da C.R., Ferreira, A. M., Vilhena, J. C. E., Almeida, F. B., Cruz, R. A. S., Florentino, A. C., Souto, Raimundo, N. P., Carvalho, J. C. T., & Caio, C. P. (2014). Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia, 24, 699-705. https://doi.org/10.1016/j.bjp.2014.10.013
  30. Roland, I., Piel, G., Delattre, L., & Evrard, B. (2003). Systematic characterization of oil-in-water emulsions for formulation design. International Journal of Pharmaceutics, 263, 85-94. https://doi.org/10.1016/s0378-5173(03)00364-8
  31. Sandrin, T. R., TeBeest, D. O., & Weidemann, G. J. (2003). Soybean and sunflower oils increase the infectivity of Colletotrichum gloeosporioides f. sp. aeschynomene to northern jointvetch. Biological Control, 26, 244-252. https://doi.org/10.1016/S1049-9644(02)00156-1
  32. Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., & Ali, M. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. European Journal of Pharmaceutics and Biopharmaceutics, 66, 227-243. https://doi.org/10.1016/j.ejpb.2006.10.014
  33. Sharma, N., Madan, P., & Lin, S. (2016). Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian Journal of Pharmaceutical Sciences, 11, 404-416. https://doi.org/10.1016/j.ajps.2015.09.004
  34. Silva, W. O. B., Mitidieri, S., Schrank, A., & Vainstein, M. H. (2005). Production and extraction of an extracellular lipase from the entomopathogenic fungus Metarhizium anisopliae. Process Biochemistry, 40, 321-326. https://doi.org/10.1016/j.procbio.2004.01.005
  35. Soberón-Chávez, G. (Ed.). (2010). Biosurfactants: From genes to applications. Springer Science & Business Media (20), 216pp. https://doi.org/10.1007/978-3-642-14490-5
  36. Tadros, T. F. (2005). Applied Surfactants: Principles and Applications. John Wiley & Sons. 634pp. https://doi.org/10.1002/3527604812
  37. Tong, K., Zhao, C., & Sun, D. (2016). Formation of nanoemulsion with long chain oil by W/O microemulsion dilution method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497, 101-108. https://doi.org/10.1016/j.colsurfa.2016.02.039
  38. Usman, M., Farooq, M., Wakeel, A., Nawaz, A, Cheema, S. A., Rehman, H. U., Ashraf, I., & Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment, 721, 137778. https://doi.org/0.1016/j.scitotenv.2020.137778
  39. Vega, F. E. (2018). The use of fungal entomopathogens as endophytes in biological control: A review. Mycologia, 110, 4-30. https://doi.org/10.1080/00275514.2017.1418578
  40. Wooster, T. J., Golding, M., & Sanguansri, P. (2008). Impact of oil type of nanoemulsion formation and Ostwald ripening stability. Langmuir, 24, 12758-12765. https://doi.org//10.1021/la801685v