Main Article Content

Abstract

Biosurfactants are amphipathic molecules generated by a variety of microorganisms with different biological functions. In this study, lactic acid bacteria were screened for their emulsification properties. However, the Lactiplantibacillus plantarum strain LBpWAM was molecularly identified using 16S rRNA, and its ability to produce surface-active peptides was investigated. The biosurfactant derived from L. plantarum LBp_WAM was shown to have the potential to reduce water surface tension from 72 mN.m-1 to 32 mN/m within a critical micelle concentration (CMC) of 2.4 mg.ml-1. The emulsification index (E24) values were evaluated for sunflower oil (60 ± 3.0%), glycerol (53.9 ± 0.11 %), olive oil (49.0 ± 2.0 %), mineral oil (50.7 ± 0.60 %), hexane (36.03±0.05 %), and kerosene (31 ±0.05 %). The biosurfactant was purified using gel filtration chromatography (GFC), and the molecular weight was determined using the SDS-PAGE method, indicating an approximate molecular weight of 19 kDa. Thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR) were used to determine the molecular structure of the obtained molecule, which was found to be composed of protein, lipid, and polysaccharides. The biosurfactant's antibacterial activity was also examined, as it showed inhibitory effects against different species of Gram-positive and Gram-negative bacteria.

Keywords

Antimicrobial activity Biosurfactant FTIR Glycolipopeptide Lactiplantibacillus plantarum

Article Details

How to Cite
Al-Seraih, A. A. ., Swadi, W. A. ., Al-hejjaj, M. Y. ., Al-Laibai, F. H. ., & Ghadban, A. K. . (2022). Isolation and Partial Characterization of Glycolipopeptide Biosurfactant Derived from A Novel Lactiplantibacillus plantarum Lbp_WAM. Basrah Journal of Agricultural Sciences, 35(2), 78–98. https://doi.org/10.37077/25200860.2022.35.2.06

References

  1. Abdalsadiq, N., Hassan, Z., & Mohd, L. A. N. I. (2018). Characterization of the physicochemical properties of the biosurfactant produced by L. acidophilus and L. pentosus. IOJPH-International open Journal of Science and Engineering, 1(2), 25-42.
  2. Abruzzo, A., Giordani, B., Parolin, C., De Gregorio, P. R., Foschi, C., Cerchiara, T., Bigucci, F., Vitali, B., & Luppi, B. (2021). Lactobacillus crispatus BC1 biosurfactant delivered by hyalurosomes: An advanced strategy to counteract Candida biofilm. Antibiotics, 10(1), 33.
  3. https://doi.org/10.3390/antibiotics10010033
  4. Adu, S. A., Naughton, P. J., Marchant, R., & Banat, I. M. (2020). Microbial biosurfactants in cosmetic and personal skincare pharmaceutical formulations. Pharmaceutics, 12(11), 1099.
  5. https://doi.org/10.3390/pharmaceutics12111099
  6. Al-Hejjaj, M. Y. (2017). Investigations of the role of peroxisomes in sterol biosynthesis in the slime mould Dictyostelium discoideum. Ph. D. Thesis, University of Sheffield, 178pp.
  7. Al-Hejjaj, M. Y., Al-Amara, S. S., Dawood, Y. A., Raisan, S. J., & Al-Tameemi, H. M. (2020). Molecular detection of new Bacillus strains from soil samples of free grazing areas in Basrah province, Southern Iraq. Annals of Tropical Medicin and Public Health, 23(11)
  8. http://doi.org/10.36295/ASRO.2020.231148
  9. Al-Seraih, A., Belguesmia, Y., Baah, J., Szunerits, S., Boukherroub, R., & Drider, D. (2017). Enterocin B3A-B3B produced by LAB collected from infant faeces: potential utilization in the food industry for Listeria monocytogenes biofilm management. Antonie Van Leeuwenhoek, 110(2), 205-219.
  10. https://doi.org/10.1007/s10482-016-0791-5
  11. Alwaely, W. A., Ghadban, A. K., & Alrubayae, I. M. (2019). Production and properties of biosurfactant from the local isolation of Candida spp. Drug Invention Today, 12(5), 948-953.
  12. Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., & Fiocco, D. (2016). Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Frontiers in microbiology, 7, 464.
  13. https://doi.org/10.3389/fmicb.2016.00464
  14. Bognolo, G. (1999). Biosurfactants as emulsifying agents for hydrocarbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1-2), 41-52.
  15. https://doi.org/10.1016/S0927-7757(98)00684-0
  16. Borges, S., Silva, J., & Teixeira, P. (2014). The role of lactobacilli and probiotics in maintaining vaginal health. Archives of Gynecology and Obstetrics, 289(3), 479-489.
  17. https://doi.org/10.1007/s00404-013-3064-9
  18. Cardoso, J. G., Andersen, M. R., Herrgård, M. J., & Sonnenschein, N. (2015). Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Frontiers in Bioengineering and Biotechnology, 3, 13.
  19. https://doi.org/10.3389/fbioe.2015.00013
  20. Cornea, C. P., Roming, F. I., Sicuia, O. A., Voaideș, C. A. T. A. L. I. N. A., Zamfir, M., & Grosu-Tudor, S. S. (2016). Biosurfactant production by Lactobacillus spp. strains isolated from Romanian traditional fermented food products. Romanian Biotechnological Letters, 21(2), 11312-11320.
  21. Falk, N. A. (2019). Surfactants as antimicrobials: A brief overview of microbial interfacial chemistry and surfactant antimicrobial activity. Journal of Surfactants and Detergents, 22(5), 1119-1127.
  22. https://doi.org/10.1002/jsde.12293
  23. Fei, Y. T., Liu, D. M., Luo, T. H., Chen, G., Wu, H., Li, L., & Yu, Y. G. (2014). Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity. PloS one, 9(11), e113792
  24. https://doi.org/10.1371/journal.pone.0113792
  25. Ferraz, C., De Araújo, Á. A., & Pastore, G. M. (2002). The influence of vegetable oils on biosurfactant production by Serratia marcescens. Applied biochemistry and biotechnology, 98(1), 841-847.
  26. https://doi.org/10.1385/ABAB:98-100:1-9:841
  27. Fidanza, M., Panigrahi, P., & Kollmann, T. R. (2021). Lactiplantibacillus plantarum–Nomad and ideal probiotic. Frontiers in Microbiology, 12, 712236.
  28. https://doi.org/10.3389/fmicb.2021.712236
  29. Fracchia, L., Cavallo, M., Allegrone, G., & Martinotti, M. G. (2010). A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Appllied Microbiology and Biotechnology, 2, 827-837.
  30. Frankel, N. W., Pontius, W., Dufour, Y. S., Long, J., Hernandez-Nunez, L., & Emonet, T. (2014). Adaptability of non-genetic diversity in bacterial chemotaxis. Elife, 3, e03526.
  31. https://doi.org/10.7554/eLife.03526.001
  32. Hajfarajollah, H., Eslami, P., Mokhtarani, B., & Akbari Noghabi, K. (2018). Biosurfactants from probiotic bacteria: A review. Biotechnology and Applied Biochemistry, 65(6), 768-783.
  33. https://doi.org/10.1002/bab.1686
  34. Harrison, F. (2013). Dynamic social behaviour in a bacterium: Pseudomonas aeruginosa partially compensates for siderophore loss to cheats. Journal of Evolutionary Biology, 26(6), 1370-1378.
  35. https://doi.org/10.1111/jeb.12126
  36. Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., & Ross, R. P. (2018). The Lactobacillus casei group: History and health related applications. Frontiers in Microbiology, 9, 2107.
  37. https://doi.org/10.3389/fmicb.2018.02107
  38. Hommel, R. K. (1994). Formation and function of biosurfactants for degradation of water-insoluble substrates. Pp, 63-87. In Ratledge, C. (Editor). Biochemistry of microbial degradation. Springer, Dordrecht. 598pp.
  39. https://doi.org/10.1007/978-94-011-1687-9_3
  40. Jimoh, A. A., & Lin, J. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental safety, 184, 109607.
  41. https://doi.org/10.1016/j.ecoenv.2019.109607
  42. Joy, S., Rahman, P. K., & Sharma, S. (2017). Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chemical Engineering Journal, 317, 232-241.
  43. https://doi.org/10.1016/j.cej.2017.02.054
  44. Kosaric, N., & Sukan, F. V. (2010). Biosurfactants: production: properties: applications. CRC Press. 504pp.
  45. https://doi.org/10.1201/9780585355702
  46. Lamilla, C., Braga, D., Castro, R., Guimarães, C., VA de Castilho, L., Freire, D. M., & Barrientos, L. (2018). Streptomyces luridus So3. 2 from Antarctic soil as a novel producer of compounds with bioemulsification potential. PloS one, 13(4), e0196054.
  47. https://doi.org/10.1371/journal.pone.0196054
  48. Madhu, A. N., & Prapulla, S. G. (2014). Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Applied biochemistry and Biotechnology, 172(4), 1777-1789.
  49. https://doi.org/10.1007/s12010-013-0649-5
  50. Malakar, C., & Deka, S. (2021). Biosurfactants against drug‐resistant human and plant pathogens. Pp, 353-372 In Sarma, H., & Vara Prasad, M. N. (Editors). Recent Advances. Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine, John Wiley & Sons Ltd. 556pp.
  51. https://doi.org/10.1002/9781119671022.ch16
  52. Marchant, R., & Banat, I. M. (2012). Microbial biosurfactants: challenges and opportunities for future exploitation. Trends in Biotechnology, 30(11), 558-565.
  53. https://doi.org/10.1016/j.tibtech.2012.07.003
  54. Markande, A. R., Patel, D., & Varjani, S. (2021). A review on biosurfactants: properties, applications and current developments. Bioresource Technology, 330, 124963.
  55. https://doi.org/10.1016/j.biortech.2021.124963
  56. Miller, R. M., & Zhang, Y. (1997). Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Pp. 59-66. In Sheehan, D. (Ed.). Bioremediation protocols. Humana Press. 339pp.
  57. https://doi.org/10.1385/0-89603-437-2:59
  58. Mnif, I., Ellouze‐Chaabouni, S., Ayedi, Y., & Ghribi, D. (2014). Treatment of diesel‐and kerosene‐contaminated water by B. subtilis SPB1 biosurfactant‐producing strain. Water Environment Research, 86(8), 707-716.
  59. https://doi.org/10.2175/106143014X13975035525780
  60. Mondal, M. H., Malik, S., Roy, A., Saha, R., & Saha, B. (2015). Modernization of surfactant chemistry in the age of gemini and bio-surfactants: A review. RSC Advances, 5(112), 92707-92718.
  61. https://doi.org/10.1039/C5RA18462B
  62. Mouafo, T. H., Mbawala, A., & Ndjouenkeu, R. (2018). Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. BioMed Research International, 2018. Article ID 5034783.
  63. https://doi.org/10.1155/2018/5034783
  64. Mulligan, C. N., Sharma, S. K., & Mudhoo, A. (Eds.). (2019). Biosurfactants: research trends and applications. CRC Press Taylor & Francis Group, 352 p.
  65. https://doi.org/10.1201/b16383
  66. Nataraj, B. H., Ramesh, C., & Mallappa, R. H. (2021). Characterization of biosurfactants derived from probiotic lactic acid bacteria against methicillin-resistant and sensitive Staphylococcus aureus isolates. LWT, 151, 112195.
  67. https://doi.org/10.1016/j.lwt.2021.112195
  68. Nurfarahin, A. H., Mohamed, M. S., & Phang, L. Y. (2018). Culture medium development for microbial-derived surfactants production—an overview. Molecules, 23(5), 1049.
  69. https://doi.org/10.3390/molecules23051049
  70. Patel, R. M., & Desai, A. J. (1997). Surface‐active properties of rhamnolipids from Pseudomonas aeruginosa GS3. Journal of Basic Microbiology, 37(4), 281-286.
  71. https://doi.org/10.1002/jobm.3620370407
  72. Peterson, S. B., Bertolli, S. K., & Mougous, J. D. (2020). The central role of interbacterial antagonism in bacterial life. Current Biology, 30(19), R1203-R1214.
  73. https://doi.org/10.1016/j.cub.2020.06.103
  74. Ron, E. Z., & Rosenberg, E. (2001). Natural roles of biosurfactants: Minireview. Environmental microbiology, 3(4), 229-236.
  75. https://doi.org/10.1046/j.1462-2920.2001.00190.x
  76. Rosenberg, E., & Ron, E. Z. (2013). Biosurfactants. Pp, 281-294. In: Rosenberg, E., DeLong, E.F., Lory S., Stackebrandt, E., Thompson, F. (Eds). The Prokaryotes. Springer, Berlin, Heidelberg. 528pp.
  77. https://doi.org/10.1007/978-3-642-31331-8_29
  78. Sakr, E. A., Ahmed, H. A. E., & Saif, F. A. A. (2021). Characterization of low-cost glycolipoprotein biosurfactant produced by Lactobacillus plantarum 60 FHE isolated from cheese samples using food wastes through response surface methodology and its potential as antimicrobial, antiviral, and anticancer activities. International Journal of Biological Macromolecules, 170, 94-106.
  79. https://doi.org/10.1016/j.ijbiomac.2020.12.140
  80. Sambrook, J., & Russell, D. W. (2006). SDS-polyacrylamide gel electrophoresis of proteins. CSH Protocols, 2006(4), pdb-prot4540.
  81. https://doi.org/10.1101/pdb.prot4540
  82. Santos, A. P. P., Silva, M. D. S., Costa, E. V. L., Rufino, R. D., Santos, V. A., Ramos, C. S., & Porto, A. L. F. (2017). Production and characterization of a biosurfactant produced by Streptomyces sp. DPUA 1559 isolated from lichens of the Amazon region. Brazilian Journal of Medical and Biological Research, 51.
  83. https://doi.org/10.1590/1414-431X20176657
  84. Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 401.
  85. https://doi.org/10.3390/ijms17030401
  86. Satpute, S. K., Kulkarni, G. R., Banpurkar, A. G., Banat, I. M., Mone, N. S., Patil, R. H., & Cameotra, S. S. (2016). Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. Journal of Basic Microbiology, 56(11), 1140-1158.
  87. https://doi.org/10.1002/jobm.201600143
  88. Satpute, S. K., Mone, N. S., Das, P., Banat, I. M., & Banpurkar, A. G. (2019). Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology, 19(1), 1-15.
  89. https://doi.org/10.1186/s12866-019-1412-z
  90. Sharma, D., Saharan, B. S., Chauhan, N., Bansal, A., & Procha, S. (2014). Production and structural characterization of Lactobacillus helveticus derived biosurfactant. The Scientific World Journal, 2014.
  91. https://doi.org/10.1155/2014/493548
  92. Shokouhfard, M., Kermanshahi, R. K., Shahandashti, R. V., Feizabadi, M. M., & Teimourian, S. (2015). The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iranian Journal of Basic Medical Sciences, 18(10), 1001-1007.
  93. Soberón-Chávez, G. (Ed.). (2010). Biosurfactants: from genes to applications Vol. 20. Springer Science & Business Media.
  94. https://doi.org/10.1007/978-3-642-14490-5
  95. Sriram, M. I., Kalishwaralal, K., Deepak, V., Gracerosepat, R., Srisakthi, K., & Gurunathan, S. (2011). Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids and Surfaces B: Biointerfaces, 85(2), 174-181.
  96. https://doi.org/10.1016/j.colsurfb.2011.02.026
  97. Shu, Q., Lou, H., Wei, T., Liu, X., & Chen, Q. (2021). Contributions of glycolipid biosurfactants and glycolipid-modified materials to antimicrobial strategy: A review. Pharmaceutics, 13(2), 227.
  98. https://doi.org/10.3390/pharmaceutics13020227
  99. Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101, 11030-11035.
  100. https://doi.org/10.1073/pnas.0404206101
  101. Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027.
  102. https://doi.org/10.1093/molbev/msab120
  103. Todorov, S. D., & Franco, B. D. G. D. M. (2010). Lactobacillus plantarum: Characterization of the species and application in food production. Food Reviews International, 26(3), 205-229.
  104. https://doi.org/10.1080/87559129.2010.484113
  105. Twigg, M. S., Baccile, N., Banat, I. M., Déziel, E., Marchant, R., Roelants, S., & Van Bogaert, I. N. (2021). Microbial biosurfactant research: Time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microbial Biotechnology, 14(1), 147-170.
  106. https://doi.org/10.1111/1751-7915.13704
  107. Vecino, X., Barbosa‐Pereira, L., Devesa‐Rey, R., Cruz, J. M., & Moldes, A. B. (2015). Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell‐bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture, 95(2), 313-320.
  108. https://doi.org/10.1002/jsfa.6720
  109. Wasoh, H., Baharun, S., Halim, M., Lajis, A. F., Ariff, A., & Lai, O. M. (2017). Production of rhamnolipids by locally isolated Pseudomonas aeruginosa using sunflower oil as carbon source. Bioremediation Science and Technology Research, 5(1), 1-6.
  110. https://doi.org/10.54987/bstr.v5i1.350
  111. Zhang, S., Liang, X., Gadd, G. M., & Zhao, Q. (2021). Marine microbial-derived antibiotics and biosurfactants as potential new agents against catheter-associated urinary tract infections. Marine Drugs, 19(5), 255.
  112. https://doi.org/10.3390/md19050255
  113. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M., Harris, H., Mattarelli, P., Toole, P., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G., Gänzle, M., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of systematic and Evolutionary Microbiology, 70(4), 2782–2858.
  114. https://doi.org/10.1099/ijsem.0.004107