Main Article Content


The field performance of movable boards ditch opener (MB) and conventional ditch opener (CD) was contrasted by using a specific resistance to determine  the  optimum  performance  of  either   one   of   them.   The   comparison was conducted using three operating  depths  (30,  40  and  50cm),  three  angles  between  the  boards  of  MB  (45,  60  and  750),  one  angle  for  CD  (650)  because  its boards were fixed, three wings width  of  the  foot  of  MB  whereas,  for  CD,  one  share width  (35cm)  and  two  soil  types  (cultivated  and  uncultivated).  CD  could  not penetrate the  uncultivated  soil  more  than  25cm  so  that  there  was  one  operating  depth.  The  results  of  the  experiments  showed  that  SR  for  MB  decreased as the operating depth,  the  angle  between  the  boards  and  the  width  of the wings of the foot  in  both  soil  types  were  increased.  Specific  resistance  (SR)  for  CD  also  decreased  as  the  operating  depth  increased  in  the  cultivated  soil,    but  in  the  uncultivated  soil,  CD  could  not  penetrate  the  soil  more  than  25cm.  SR for MB was  lower  than  that  for  CD  for  all  operating  depths,  the  angle  between the boards,  the width of the wings of the foot in both soil types. SR for         MB and CD  in  the  cultivated  soil  was  low  compared  to  uncultivated  soil.  The  soil  type  decreased  SR  for  MB  more  than  the  operating  depth,  the  angle   between its boards and the width of  its  wings.  On  the  other  hand,  the  angle  between its boards reduced  SR  more  than  the  width  of  the  wings  and  the  operating depth. MB surpassed CD in giving lower SR and that means the field performance of MB was higher than that for CD.


Conventional ditch opener Movable boards ditch opener Specific resistance Operating depth Angle between movable boards

Article Details

How to Cite
Aday, S. H. ., & Al-muthafar, Y. . (2019). Comparison Study between the Field Performance of a Movable Boards and Conventional Ditch Openers in Cultivated and Uncultivated Soils, Part 3: The Specific Resistance. Basrah Journal of Agricultural Sciences, 32(1), 15–24.


  1. Aday, S.H. (2015). Theory of agriculture machines. Alghadeer Co. for Printing and Publishing Ltd. Basrah, Iraq. 154pp.
  2. Aday, S.H. & Al-Haliphy, A.R. (2001). The disturbed area and the specific resistance of a modified subsoiler in heavy soil. Basrah J. Agric. Sci., 14 (3): 73-98.
  3. Aday, S.H. & Al-Muthafar, Y.W. (2018).Comparison between the performance of a movable boards ditch opener and the conventional ditch opener in cultivated and uncultivated soil. Part (1): The draft force. Basrah J. Agric. Sci., 31(1): 85-92.
  4. Aday, S.H. & Hilal, Y.Y. (2004). The effect of lifting angle of the subsoiler foot wings on its field performance in heavy soils. The draft force and the disturbed area. Iraq J. Agric., 9(3): 195-207.
  5. Aday, S.H. & Hilal, Y.Y. (2001). The effect of wings width on the field performance in heavy soils. The specific resistance and energy utilization efficiency. Basrah J. Agric. Sci., 14(1): 51-66.
  6. Aday, S.H. & Hmood, M.S. (1995). The field performance of the subsoiler when provided with wings and shallow tines in heavy soils. Mesopotamia J., 7(4): 16-20.
  7. Aday, S.H.; Abdul-Nabi, M.A. & Ndawii, D.R. (2011). The effect of the lateral distance between the shallow tines on the disturbed area and the specific resistance of the subsoiler. Part (2).
  8. Aday, S.H.; Ramdhan, M. & Ali, H. (2016). Evaluation of the field performance of partially swerved double tines subsoiler in two different soil textures and two levels of moisture contents. Part 2: Specific resistance and energy utilization efficiency. 2nd national conference on mechanization and new technology, Ramin University of Agricultural Science and Natural Resources. Ahvaz, Khuzestan, Iran, June.: 1-14.
  9. Ahmed, M.H. and Godwin, R.J. (1983) The influence of wing position on subsoiler penetration and soil disturbance. J. Agric. Engng. Res. 28: 489-492.
  10. Black, C.; White, J.L.; Ensminger, J.E & Clark, F.E. (1983). Method of soil analysis. 6th edition. Am. Soc. Agron, Madison. Wisconsin: 770pp.
  11. Gill, W.R. & Vandenberg, G. E. (1968). Soil dynamic in tillage and traction. Agriculture handbook, No. 316 Agric. Res. Service, U.S.D.A.
  12. Godwin, R.J. & Spoor, G. (1977). Soil failure with narrow tines. J. Agric. Eng. Res., 22: 213-228.
  13. Godwin, R.J; Spoor, G. & Soomro, M.S. (1984). The effect of tine arrangement on soil forces and disturbance. J Agric. Eng. Res; 30; 47-56.
  14. Mckyes, E. & Masware, J. (1997). Effect of design parameters of flat tillage tools on loosening of clay soil. J. Soil & Tillage Res., 43: 195-204.
  15. Owen, G.T. (1988). Soil disturbance associated with deep subsoiling in compact soils. Can. Agric. Eng., 30 (1): 33-37.
  16. Ramadan, M.N. (2011). Evaluation of the mechanical performance of the double tines longitudinally arranged subsoiler and its effect on some growth characteristic of barley crop. M. Sc. Thesis. Coll. Agriculture, Univ. Basrah: 174pp.
  17. Reeder, R.L.; Wood, R.K. and Finck, C.L. (1993). Five subsoiler designs and their effects on soil properties and crop yields. Trans ASAE, 36 (6): 1525-1531.
  18. Spoor, G. & Godwin, R.G. (1978). An experimental investigation into the deep loosening of soil by rigid tines. J. Agric. Eng. Res., 23 (3): 243-258.