Main Article Content

Abstract

Biscuits are a popular ready-to-eat food due to their affordable cost and long shelf life. Herein, we review the quality parameters of the biscuits, with a special focus on the changes caused by thermal processing. Particularly, the presence of possible contaminants, including the production of hydroxymethylfurfural is reviewed. In addition, the various microbiological sources of concern during the biscuit-making process, and their effect on the shelf-life and quality of the biscuits are presented. Based on the current state of literature, modern challenges in biscuit-making and a future outlook of the biscuit industry is provided. This review will be useful in understanding the current state of the literature regarding the quality parameters of biscuits and the important critical control points in order to maintain the safety and high quality of biscuits produced.

Keywords

Biscuit Baking technology Biscuit quality Food processing

Article Details

How to Cite
N. Haider, N. ., B. Altemimi, A. ., S. George, S., & Pratap-Singh, A. . (2022). The Chemical Composition and Quality Parameters of Biscuits: A Review. Basrah Journal of Agricultural Sciences, 35(1), 257–277. https://doi.org/10.37077/25200860.2022.35.1.19

References

  1. aAbdel-Aal, E. S. (2008). Effects of baking on protein digestibility of organic spelt products determined by two in vitro digestion methods. LWT-Food Science and Technology, 41(7), 1282-1288. https://doi.org/10.1016/j.lwt.2007.07.018
  2. Adeloa, A. A., Ayansina, S. O., Kayode, G. I., & Aderounmu, A. R. (2020). Effect of storage on physical, chemical, microbial and sensory properties of a formulated biscuit prepared from sweetpotato-pigeonpea-banana flour blend. Alexandria Journal of Food Science and Technology, 17(2), 1-10. https://doi.org/10.21608/AJFS.2020.150652
  3. Agu, H. O., & Okoli, N. A. (2001). Physico-chemical, sensory, and microbiological assessments of wheat‐based biscuit improved with beniseed and unripe plantain. Food Science and Nutrition, 2(5), 464-469. https://doi.org/10.1002/fsn3.135
  4. Ahmad, S. S., Morgan, M. T., & Okos, M. R. (2001). Effects of microwave on the drying, checking and mechanical strength of baked biscuits. Journal of Food Engineering, 50(2), 63-75. https://doi.org/10.1016/S0260-8774(00)00186-2
  5. Al-Husnian, L. A., & Alkahtani, M. D. (2015). Microbiological study on children biscuits in Saudi Arabia. Egyptian Academic Journal of Biological Sciences, G. Microbiology, 7(1), 93-100. https://doi.org/10.21608/eajbsg.2015.16490
  6. Alkanan, Z. T., Altemimi, A. B., Al-Hilphy, A. R. S., Cacciola, F., & Ibrahim, S. I. (2021). Application and effects of ohmic-vacuum combination heating on the quality factors of tomato paste. Foods, 10, 12, 1-19. https://doi.org/10.3390/foods10122920
  7. Al-Nasiry, B. S. A. (2020). Detection of bacterial contamination in filled and dried biscuit products of young children. Annals of Tropical Medicine and Health, 23(16), 231-602. http://doi.org/10.36295/ASRO.2020.231602
  8. Al-Nasser, M., Fayssal, I., & Moukalled, F. (2021). Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 184, 116252. https://doi.org/10.1016/j.applthermaleng.2020.116252
  9. Alobo, A. P. (2001). Effect of sesame seed flour on millet biscuit characteristics. Plant Foods for Human Nutrition, 56(2), 195-202. https://doi.org/10.1023/A:1011168724195
  10. Altemimi, A. B., Al-Hilphy, A. R. S., Abedelmaksoud, T. G., Aboud, S. A., Badwaik, L. S., Lakshmanan, G. , Noore, S., & Pratap-Singh, A. (2021). Infrared radiation favorably influences the quality characteristics of key lime juice. Applied Sciences, 11(6), 2842. https://doi.org/10.3390/app11062842
  11. Al-Timimi, S. S., Habib, K. A., & Khathier, E. J. (2010). Microbial contamination in some commercial biscuits in Baghdad City. Baghdad Science Journal, 7(2), 867-875. https://doi.org/10.21123/bsj.2010.7.2.867-875. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1051
  12. Aly, A. A. (2019). Chemical, rheological, sensorial and microbial evaluation of supplemented wheat flour biscuit with guava seeds powder. Journal of Food and Dairy Sciences, 10(5), 147-152. https://doi.org/10.21608/jfds.2019.43132
  13. Aly, A. A., El-Deeb, F. E., Abdelazeem, A. A., Hameed, A. M., Alfi, A. A., Alessa, H., & Alrefaei, A. F. (2021). Addition of whole barley flour as a partial substitute of wheat flour to enhance the nutritional value of biscuits. Arabian Journal of Chemistry, 14(5), 103112. https://doi.org/10.1016/j.arabjc.2021.103112
  14. Arepally, D., Reddy, R. S., Goswami, T. K., & Datta, A. K. (2020). Biscuit baking: A review. LWT Lebensmittel-Wissenschaft und-Technologie, 131 (2), 109726.https://doi.org/10.1016/j.lwt.2020.109726
  15. Arimi, J. M., Duggan, E., O’sullivan, M., Lyng, J. G., & O’riordan, E. D. (2010). Effect of water activity on the crispiness of a biscuit (Crackerbread): Mechanical and acoustic evaluation. Food Research International, 43(6), 1650-1655. https://doi.org/10.1016/j.foodres.2010.05.004
  16. Awobusuyi, T. D., Pillay, K., & Siwela, M. (2020). Consumer acceptance of biscuits supplemented with a sorghum–insect meal. Nutrients, 12(4), 895. https://doi.org/10.3390/nu12040895
  17. Capuano, E, & Fogliano, V. (2011). Acrylamide and 5 hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT -Food Science and Technology, 44(4), 793-810. https://doi.org/10.1016/j.lwt.2010.11.002
  18. Codex Alimentarius Commission (2015). Joint FAO/WHO standards programme Codex committee on contaminants in foods, fifth session. Working document for information and use in discussions related to contaminants and toxins in the GSCTFF Codex Alimentary Comission, Vialedelle Terme di Caracalla Rome, 90pp.
  19. Commission Regulation (EU) 2017/2158 of 20 November (2017). Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance.) (OJ L 304 20.11.2017, p. 24, CELEX: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R2158)
  20. Cronin, K., & Preis, C. A. (2000). Statistical analysis of biscuit physical properties as affected by baking. Journal of Food Engineering, 46(4), 217-225. https://doi.org/10.1016/S0260-8774(00)00053-4
  21. Dada, E. O., Ojo, O. N., Njoku, K. L., & Akinola, M. O. (2017). Assessing the levels of Pb, Cd, Zn and Cu in biscuits and home-made snacks obtained from vendors in two tertiary institutions in Lagos, Nigeria. Journal of Applied Sciences and Environmental Management, 21(3), 521-524. https://doi.org/10.4314/jasem.v21i3.13
  22. Das, K. K., Sarkar, A., & Hossain, A. (2020). Isolation of pathogenic microorganisms and determination of their antibiotic resistance patterns collected from different bakery products of Dhaka city. Food Research, 4(4), 1312-1316. https://doi.org/10.26656/fr.2017.4(4).400
  23. Dayakar, B. R., & Bhargavi, G. (2017). Technology involved in quality of biscuits: influence of factors and impact on processing—a critical review. International Journal of Pure and Applied Bioscience, 5(4), 532-542. http://doi.org/10.18782/2320-7051.5096
  24. Delgado-Andrade, C., Rufian-Henares, J. A., & Morales, F. J. (2009). Hydroxymethylfurfural in commercial biscuits marketed in Spain. Journal of Food and Nutrition Research, 48(1), 14-19.
  25. Dessev, T., Lalanne, V., Keramat, J., Jury, V., Prost, C., & Le-Bail, A. (2020). Influence of baking conditions on bread characteristics and acrylamide concentration. Journal of Food Science and Nutrition Research, 3(4), 291-310. https://doi.org/10.26502/jfsnr.2642-11000056
  26. Dewettinck, K., Van Bockstaele, F., Kühne, B., Van de Walle, D., Courtens, T. M., & Gellynck, X. (2008). Nutritional value of bread: Influence of processing, food interaction and consumer perception. Journal of Cereal Science, 48(2), 243-257. https://doi.org/10.1016/j.jcs.2008.01.003
  27. Dietrich, R., Jessberger, N., Ehling-Schulz, M., Märtlbauer, E., & Granum, P. E. (2021). The food poisoning toxins of Bacillus cereus. Toxins, 13(2), 98. https://doi.org/10.3390/toxins13020098
  28. EFSA (European Food Safety Agency). (2015). Scientific opinion on acrylamide in food, EFSA Journal, 13(6), 4104. https://doi.org/10.2903/j.efsa.2015.4104
  29. Elham-Elshewey, Hamouda, A. F., & Radwan, M. (2015). Assessment of some heavy metals in some fast foods in Kalubia Governorate. International Journal for Research in Health Sciences & Nursing, 1(2), 71-93.
  30. Ferdian, E., Ariestanti, C. A., & Budiarso, T. Y. (2020). Detection and identification of microbial contaminant in bakery products in Yogyakarta city, Indonesia. Sciscitatio, 1(1), 44-50. https://doi.org/10.21460/sciscitatio.2020.11.13
  31. Forsythe, S. & Hays, P. (Ed.) (2012). Food hygiene, microbiology and HACCP. 3rd ed.; Springer Science and Business Media, Berlin/Heidelberg, 449pp.
  32. Gökmen, V., Açar, Ö. Ç., Arribas-Lorenzo, G., & Morales, F. J. (2008). Investigating the correlation between acrylamide content and browning ratio of model cookies. Journal of Food Engineering, 87(3), 380-385. https://doi.org/10.1016/j.jfoodeng.2007.12.029
  33. Iwegbue, C. M., Onyonyewoma, U. A., Bassey, F. I., Nwajei, G. E., & Martincigh, B. S. (2015). Concentrations and health risk of polycyclic aromatic hydrocarbons in some brands of biscuits in the Nigerian market. Human and Ecological Risk Assessment: An International Journal, 21(2), 338-357. https://doi.org/10.1080/10807039.2014.916542
  34. Keskin, S. O., Oztürk, S., Sahin, S., Koksel, H., & Sumnu, G. (2005). Halogen lamp–microwave combination baking of cookies. European Food Research and Technology, 220(5), 546-551. https://doi.org/10.1007/s00217-005-1131-6
  35. Kim, S. A., Oh, S. W., Lee, Y. M., Imm, J. Y., Hwang, I. G., Kang, D. H., & Rhee, M. S. (2011). Microbial contamination of food products consumed by infants and babies in Korea. Letters in Applied Microbiology, 53(5), 532-538. https://doi.org/10.1111/j.1472-765X.2011.03142.x
  36. KorayPalazoğlu, T., Coşkun, Y., Kocadağlı, T., & Gökmen, V. (2012). Effect of radio frequency postdrying of partially baked cookies on acrylamide content, texture, and colour of the final product. Journal of Food Science, 77(5), E113-E117. https://doi.org/10.1111/j.1750-3841.2012.02664.x
  37. Kowalski, S., Lukasiewicz, M., Duda-Chodak, A., & Zięć, G. (2013a). 5-Hydroxymethyl- 2-furfural (HMF)-heat-induced formation, occurrence in food and biotransformation - A review. Polish Journal of Food and Nutrition Science, 63(4), 207-225. https://doi.org/10.2478/v10222-012-0082-4
  38. Kowalski, S., Lukasiewicz, M., Juszczak, L., & Kutyła-Kupidura, E. M. (2013b). Dynamics of 5-hydroxymethylfurfural formation in shortbreads during thermal processing. Czech Journal of Food Sciences, 31(1), 33-42. https://doi.org/10.17221/87/2012-CJFS
  39. Kuhn, D., Ziem, R., Scheibel, T., Buhl, B., Vettorello, G., Pacheco, L. A., & Hoehne, L. Heidrich, D., Kauffmann, C., de Freitas, E.D., Ethur, E. M., Hoehne, E. (2019). Antibiofilm activity of the essential oil of Campomanesia aurea O. Berg against microorganisms causing food borne diseases. LWT, 108, 247-252. https://doi.org/10.1016/j.lwt.2019.03.079
  40. Logan, N. A. (2012). Bacillus and relatives in foodborne illness. Journal of Applied Microbiology, 112(3), 417-429.https://doi.org/10.1111/j.1365-2672.2011.05204.x
  41. Mencin, M., Abramovič, H., Vidrih, R., & Schreiner, M. (2020). Acrylamide levels in food products on the Slovenian market. Food Control, 114, 107267. https://doi.org/10.1016/j.foodcont.2020.107267
  42. Mesías, M., Morales, F. J., & Delgado-Andrade, C. (2019). Acrylamide in biscuits commercialised in Spain: A view of the Spanish market from 2007 to 2019. Food and Function, 10(10), 6624-6632. https://doi.org/10.1039/C9FO01554J
  43. Mohammadi, M. J., Yari, A. R., Saghazadeh, M., Sobhanardakani, S., Geravandi, S., Afkar, A., & OmidiKhaniabadi, Y. A. (2018). Health risk assessment of heavy metals in people consuming Sohan in Qom, Iran. Toxin Reviews, 37(4), 278-286. https://doi.org/10.1080/15569543.2017.1362655
  44. Morais, M. P. D., Caliari, M., Nabeshima, E. H., Batista, J. E. R., Campos, M. R. H., & Soares Junior, M. S. (2018). Storage stability of sweet biscuit elaborated with recovered potato starch from effluent of fries industry. Food Science and Technology, 38(2), 216-222. https://doi.org/10.1590/fst.32916
  45. Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419, 448-449. https://doi.org/10.1038/419448a
  46. Mousa, R. M. A. (2019). Simultaneous mitigation of 4(5)-methylimidazole, acrylamide, and 5-hydroxymethylfurfural in ammonia biscuit by supplementing with food hydrocolloids, food science-nutrition. Food Science & Nutrition, 7(12), 3912-3921. https://doi.org/10.1002/fsn3.1250
  47. Niroula, A. (2019). Preparation and Shelf Life Study of High Energy Biscuits. Ph. D. Thesis, Tribhuvan University, 92pp.
  48. Oladunjoye, A. O., Eziama, S. C., & Aderibigbe, O. R. (2021). Proximate composition, physical, sensory and microbial properties of wheat-hog plum bagasse composite biscuits. LWT, 141, 111038. https://doi.org/10.1016/j.lwt.2021.111038
  49. Oyekunle, J. A. O., Durodola, S. S., Adekunle, A. S., Afolabi, F. P., Ore, O. T., Lawal, M. O., & Ojo, O. S. (2021). Potentially toxic metals and polycyclic aromatic hydrocarbons composition of some popular biscuits in Nigeria. Chemistry Africa, 4, 399-410. https://doi.org/10.1007/s42250-020-00215-7
  50. Ölmez, H., Tuncay, F., Özcan, N., & Demirel, S. A. (2008). Survey of acrylamide levels in foods from the Turkish market. Journal of Food Composition and Analysis, 21(7), 564-568. https://doi.org/10.1016/j.jfca.2008.04.011
  51. Pasqualone, A., Haider, N. N., Summo, C., Coldea, T. E., George, S. S., & Altemimi, A. B. (2021). Biscuit contaminants, their sources and mitigation strategies: A review. Foods, 10(11), 2751. https://doi.org/10.3390/foods10112751
  52. Prata, R., Petrarca, M. H., Teixeira Filho, J., & Godoy, H. T. (2021). Simultaneous determination of furfural, 5-hydroxymethylfurfural and 4-hydroxy-2, 5-dimethyl-3 (2H)-furanone in baby foods available in the Brazilian market. Journal of Food Composition and Analysis, 99, 103874. https://doi.org/10.1016/j.jfca.2021.103874
  53. Pratap-Singh, A., Yen, P. P. L., Ramaswamy, H. S., & Singh, A. (2018). Recent advances in agitation thermal processing. Current Opinion in Food Science, 23, 90-96. https://doi.org/10.1016/j.cofs.2018.07.001
  54. Sabillón, L., Stratton, J., Rose, D., Eskridge, K., & Bianchini, A. (2021). Effect of high-pressure processing on the microbial load and functionality of sugar-cookie dough. Cereal Chemistry, 98(1), 70-80.
  55. Salazar-Flores, J., Torres-Jasso, J. H., Rojas-Bravo, D., Reyna-Villela, Z. M., & Torres Sánchez, E. D. (2019). Effects of Mercury, Lead, Arsenic and Zinc to Human Renal Oxidative Stress and Functions: A Review. Journal of Heavy Metal Toxicity and Diseases, 4(1), 1-16. https://doi.org/10.21767/2473-6457.10027
  56. Sampaio, R. M., Marcos, S. K., Moraes, I. C., & Perez, V. H. (2009). Moisture adsorption behavior of biscuits formulated using wheat, oatmeal and passion fruit flour. Journal of Food Processing and Preservation, 33(1), 105-113. https://doi.org/10.1111/j.1745-4549.2008.00276.x
  57. Swanson, K. M., & Anderson, J. E. (2000). Industry perspectives on the use of microbial data for hazard analysis and critical control point validation and verification. Journal of food protection, 63(6), 815-818. https://doi.org/10.4315/0362-028X-63.6.815
  58. Serrem, C. A., de Kock, H.L., & Taylor, J. R. (2011). Nutritional quality, sensory quality and consumer acceptability of sorghum and bread wheat biscuits fortified with defatted soy flour. International Journal of Food Science and Technology, 46(1), 74-83. https://doi.org/10.1111/j.1365-2621.2010.02451.x
  59. Shkhaier, S. L. (2018). Cadmium, nickel and lead in chocolates and candies from Baghdad markets in Iraq. Al-Mustansiriyah Journal of Pharmaceutical Sciences (AJPS), 17(1), 9-9. http://ajps.uomustansiriyah.edu.iq/index.php/AJPS/article/view/76/52
  60. Shuvo, S. D., & Zahid, M. A. (2016). Comparative study on nutritional and microbiological quality analysis of supplied fortified high energy biscuit for school feeding in poverty prone areas in Bangladesh with world food programme nutritional requirements. Science & Technology, 2(8), 451-458.
  61. Singh, A., Pratap-Singh, A., & Ramaswamy, H. S. (2017a). A controlled agitation process for improving quality of canned green beans during agitation thermal processing. Journal of Food Science, 81(6), E1399-E1411. https://doi.org/10.1111/1750-3841.13308
  62. Singh, A. P., Singh, A., & Ramaswamy, H. S. (2017b). Heat transfer phenomena during thermal processing of liquid particulate mixtures-a review. Critical Reviews in Food Science and Nutrition, 57(7), 1350-1364. https://doi.org/10.1080/10408398.2014.989425
  63. Smart Cities Market, (2020). Growth, trends, & forecast (2020-2025). https://www.mordorintelligence.com/industry-reports/smart-cities-market (Accessed 10 October 2020).
  64. Sosa‐Morales, M. E., Guerrero cruz, G. A. B. R. I. E. L. A., Gonzalezloo, H. U. G. O., & Velez‐ruiz, J. F. (2004). Modeling of heat and mass transfer during baking of biscuits. Journal of Food Processing and Preservation, 28(6), 417-432. https://doi.org/10.1111/j.1745-4549.2004.23050.x
  65. Svecova, B., & Mojmir, M. A. C. H. (2017). Content of 5-hydromethyl-2-furfural in biscuits for kids. Interdisciplinary Toxicology, 10(2), 66-69. https://doi.org/10.1515/intox-2017-0011
  66. Van Der Fels- Klerx, H. J., Capuano, E., Nguyen, H. T., Ataç Mogul, B., Kocadağlı, T., Göncüoğlu Taş, N., Hamzalıoğlu, A., van boekel, M. A. J. S., & Gökmen, V. (2014). Acrylamid and 5- Hydroxymethy furfural formation during baking of biscuit: NACL and temperature- time profile effects and kinetics, Food Research International, 57, 210-217. https://doi.org/10.1016/j.foodres.2014.01.039
  67. Vitali, D., Dragojević, I. V., & Šebečić, B. (2009). Effects of incorporation of integral raw materials and dietary fibre on the selected nutritional and functional properties of biscuits. Food Chemistry, 114(4), 1462-1469. https://doi.org/10.1016/j.foodchem.2008.11.032
  68. Waleed, A. A., Mahdi, A. A., Al-Maqtari, Q. A., Fan, M., Wang, L., Li, Y., & Zhang, H. (2019). Evaluating the role of microwave-baking and fennel (Foeniculum vulgare L.)/nigella (Nigella sativa L.) on acrylamide growth and antioxidants potential in biscuits. Journal of Food Measurement and Characterization, 13(3), 2426-2437. https://doi.org/10.1007/s11694-019-00163-y
  69. World Food Program (WFP) (2010). 2.0, Technical Specifications of High Energy Biscuits (HEB). World Food Programme.
  70. Yolacaner, E. T., Sumnu, G., & Sahin, S. (2017). Microwave-assisted baking. Pp. 117-141. In: Regier, M., Knoerzer, K., & Schubert, H. (Eds.). The Microwave Processing of Foods. 2nd edition, Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100528-6.00006-1
  71. Žilić, S., Aktağ, I. G., Dodig, D., Filipović, M., & Gökmen, V. (2020). Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food Research International, 132, 109109.https://doi.org/10.1016/j.foodres.2020.109109