Main Article Content

Abstract

The current COVID-19 pandemic is the main issue globally, and finding solutions either for disease prevention or treatment is nowadays a key scientific concern. Good immunity can be shown as the only proven method of overcoming or minimizing the adverse effects of virus infections. Since Coronavirus spread, different conventional herbs were used as a traditional medication to enhance people's immunity to combat the virus. Herbs are sources of several phytochemical compounds with compelling bioactivities. A review of the studies concerning herbal plants with proven properties against viral infections is highlighted in the present work. Besides, this work also contains some of the recently published studies related to natural herbs that could be highly beneficial in preventing or treating the infection by Coronavirus. Based on the reviewed literature presented in this update, it was concluded that phytochemical constituents found in many herbs could have a potential role in preventing or treating the symptoms associated with Coronavirus infection.

Keywords

Bioactive compounds COVID-19 Antiviral Herbal therapeutics

Article Details

How to Cite
A. El-Chaghaby, G. ., Rashad, S. ., & Chavali, M. . (2022). An Update on Herbal Bioactive Phytochemicals and their Potential Role during the COVID-19 Pandemic: A Review. Basrah Journal of Agricultural Sciences, 35(1), 278–290. https://doi.org/10.37077/25200860.2022.35.1.20

References

  1. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology, 41, 40-59. https://doi.org/10.1016/j.biocel.2008.06.010
  2. Ahmed, A. F., Shi, M., Liu, C., & Kang, W. (2019) Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Science and Human Wellness, 8, 67-72. https://doi.org/10.1016/j.fshw.2019.03.004
  3. Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G., Lightfoot, D. A. (2017). Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042
  4. Bachran, C., Bachran, S., Sutherland, M., Bachran, D., & Fuchs, H., (2008). Saponins in tumor therapy. Mini-Reviews in Medicinal Chemistry, 8, 575-584. https://doi.org/10.2174/138955708784534445
  5. Belabdelli, F., Piras, A., Bekhti, N., Falconieri, D., Belmokhtar, Z., & Merad, Y. (2020). Chemical composition and antifungal activity of Foeniculum vulgare Mill. Chemistry Africa, 3, 323-328. https://doi.org/10.1007/s42250-020-00130-x
  6. Boyu, P., Senbiao, F., Ju, Z., Ya, P, Han, L., Yun, W., Min, L., & Liren, L., (2020). Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Computational and Structural Biotechnology Journal, 18, 3518-3527. https://doi.org/10.1016/j.csbj.2020.11.010
  7. Butt, M. S., Pasha, I., Sultan, M. T., Randhawa, M. A., Saeed, F., & Ahmed, W. (2013). Black pepper and health claims: A comprehensive treatise. Critical Reviews in Food Science and Nutrition, 53, 875-886. https://doi.org/10.1080/10408398.2011.571799
  8. Chowdhury, M. A., Hossain, N., Kashem, M. A., Shahid, M. A., & Alam, A. (2020). Immune response in COVID-19: A review. Journal of Infection and Public Health, 13, 1619-1629. https://doi.org/10.1016/S0952-7915(02)00354-0
  9. Dai, Y., Qiang, W., Gui, Y., Tan, X., Pei, T., Lin, K., Cai, S., Sun, L., Ning, G., Wang, J., Guo, H., Sun, Y., Cheng, J., Xie, L., Lan, X., & Wang, D. (2021). A large-scale transcriptional study reveals inhibition of COVID-19 related cytokine storm by traditional Chinese medicines. Science Bulletin, 66, 844-888. https://doi.org/10.1016/j.scib.2021.01.005
  10. Eid, H. M., & Haddad, P. S. (2017). The antidiabetic potential of quercetin: Underlying mechanisms. Current Medicinal Chemistry, 24(4):355-364. https://doi.org/10.2174/0929867323666160909153707
  11. Farideh, Z. Z., Bagher, M., Ashraf, A., Akram, A., & Kazem, M. (2010). Effects of chamomile extract on biochemical and clinical parameters in a rat model of polycystic ovary syndrome. Journal of Reproduction & Infertility, 11, 169-174. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3719301/
  12. Francis, G., Kerem, Z., Makkar, H. P. S., & Becker, K., (2002). The biological action of saponins in animal systems: a review. British Journal of Nutrition, 88(6), 587-605. https://doi.org/10.1079/bjn2002725
  13. Fujimoto, A. D., & Isidoro, C. (2020). The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? Journal of Traditional and Complementary Medicine, 10, 405-419. https://doi.org/10.1016/j.jtcme.2020.05.003
  14. Gagan, K. T., Harshit R., Chavali M., & Deepshikha R. (2021). Nanotechnology for mitigating the impact of COVID-19. Journal of Applied Science, Engineering, Technology, and Education, 3/2, 171-180. https://doi.org/10.35877/454RI.asci151
  15. Gautam, S., Gautam, A., Chhetri, S., & Bhattarai, U., (2022). Immunity against COVID-19: Potential role of Ayush Kwath. Journal of Ayurveda and Integrative Medicine, 13, 100350. 8pp. https://doi.org/10.1016/j.jaim.2020.08.003
  16. Geng, C. A., Yang, T. H., Huang, X. Y., Yang, J., Ma, Y. B., Li, T. Z., Zhang, X. M., & Chen, J. J. (2018). Anti-hepatitis B virus effects of the traditional Chinese herb Artemisia capillaries and its active enynes. Journal of Ethnopharmacology, 224, 283-289. https://doi.org/10.1016/j.jep.2018.06.005
  17. Ghildiyal, R., Prakash, V., Chaudhary, V. K., Gupta, V., & Gabrani, R. (2020) Phytochemicals as Antiviral Agents: Recent Updates. 279-295. In: Swamy, M. K. (Ed.) Plant-derived Bioactives. Springer, Singapore. 619pp. https://doi.org/10.1007/978-981-15-1761-7_12
  18. Gowrishankar, S., Muthumanickam, S., Kamaladevi, A., Karthika, C., Jothi, R., Boomi, P., Maniazhagu, D., & Pandian, S. K. (2021) Promising phytochemicals of traditional Indian herbal steam inhalation therapy to combat COVID-19 - An in silico study. Food and Chemical Toxicology, 148, 111966. https://doi.org/10. 1016/j.fct.2020.111966
  19. Grigore, A. (2017). Chapter 5. Plant Phenolic Compounds as Immunomodulatory Agents. 75-98. In Soto-Hernandez, M., Palma-Tenango, M., & del Rosario Garcia-Mateos, M. (Eds.). Phenolic Compounds. ItechOpenbook Series. https://doi.org/10.5772/66112
  20. Gulcin, I., Kaya, R., Goren, A. C., Akincioglu, H., Topal, M., Bingol, Z., & Alwasel, S. (2019) Anticholinergic, antidiabetic and antioxidant activities of cinnamon (Cinnamomum verum) bark extracts: polyphenol contents analysis by LC-MS/MS. International Journal of Food Properties, 22, 1511-1526. https://doi.org/1080/10942912.2019.1656232
  21. He, T., Qu, R., Qin, C., Wang, Z., Zhang, Y., Shao, X., & Lu, T. (2020) Potential mechanisms of Chinese Herbal Medicine that implicated in the treatment of COVID-19 related renal injury. Saudi Pharmaceutical Journal, 28, 1138-1148.https://doi.org/10.1016/j.jsps.2020.08.002
  22. Hostettmann, K., & Marston, A., (1995). Chemistry and pharmacology of natural products: Saponins. Cambridge University Press, New York. 548pp. https://doi.org/10.1021/np960011z
  23. Kaur, S., (2014). Study of total phenolic and flavonoid content, antioxidant activity and antimicrobial properties of medicinal plants. Journal of Microbiology & Experimentation, 1, 1-6. https://doi.org/10.15406/jmen.2014.01.00005
  24. Khan, S., & Gerber, D. E., (2020). Autoimmunity, checkpoint inhibitor therapy and immune-related adverse events: A review. Seminars in Cancer Biology, 64, 93-101. https://doi.org/10.1016/j.semcancer.2019.06.012
  25. Koshak, D. A. E., & Koshak, P. E. A. (2020). Nigella sativa L as potential phytotherapy for coronavirus disease 2019: A mini-review of in silico studies. Current Therapeutic Research- Clinical and Experimental, 93, 100602. https://doi.org/10.1016/j.curtheres.2020.100602
  26. Laribi, B., Kouki, K., M’Hamdi, M., & Bettaieb, T. (2015) Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 103, 9-26. https://doi.org/10.1016/j.foodchem.2019.01.171
  27. Law, S., Leung, A. W., & Xu, C. (2020). Is the traditional Chinese herb Artemisia annua possible to fight against COVID-19? Integrative Medicine Research, 9, 100474. https://doi.org/10.1016/j.imr.2020.100474
  28. Law, A. H. Y., Yang, C. L. H., Lau, A. S. Y., & Chan, G. C. F. (2017). Antiviral effect of forsythoside A from Forsythia suspensa (Thunb.) Vahl fruit against influenza: A virus through reduction of viral M1 protein. Journal of Ethnopharmacology, 209, 236-247. https://doi.org/10.1016/j.jep.2017.07.015
  29. Lee, D. Y. W., Li, Q. Y., Liu, J., Efferth, T. (2021) Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine, 80, 153337. https://doi.org/10.1016/j.phymed.2020.153337
  30. Li, Y. H., Lai, C. Y., Su, M. C., Cheng, J. C., & Chang, Y. S. (2019) Antiviral activity of Portulaca oleracea L. against influenza A viruses. Journal of Ethnopharmacology, 241, 112013. https://doi.org/10.1016/j.jep.2019.112013
  31. Lorenzo, J. M., Mousavi Khaneghah, A., Gavahian, M., Marszałek, K., Eş, I., Munekata, P. E. S., & Barba, F. J. (2019) Understanding the potential benefits of thyme and its derived products for the food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Critical Reviews in Food Science and Nutrition, 59, 2879-2895. https://doi.org/10.1080/10408398.2018.1477730
  32. Lv, X. Q., Zou, L. L., Tan, J. L., Li, H., Li, J. R., Liu, N. N., Dong, B., Song, D. Q., & Peng, Z. G. (2020) Aloperine inhibits hepatitis C virus entry into cells by disturbing internalisation from endocytosis to the membrane fusion process. European Journal of Pharmacology, 883, 173323. https://doi.org/10.1016/j.ejphar.2020.173323
  33. Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland), 8, 185. https://doi.org/ 10.3390/foods8060185
  34. Maryam, M., Te, K. K., Wong, F. C., Chai, T. T., Low, G. K. K., Gan, S. C., & Yee Chee, H. (2020). Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against Dengue virus. Journal of Integrative Agriculture, 19, 1085-1096. https://doi.org/10.1016/S2095-3119(19)62820-0
  35. Michael, W., Jonathan, P., Brendan, B. L., Martha, I. N., Verity, H., Jeffrey, B. J., Andrew, R., Marc, A. S. Joel, O. W., & Philippe, L. (2020). The emergence of SARS-CoV-2 in Europe and North America. Science, 370, 564-570. https://doi: 10.1126/science.abc8169
  36. Mills, S., & Bone, K., (2000). Principles and Practice of Phytotherapy: Modern Herbal Medicine. Churchill Livingdtone, Edinburg, 439-447. https://doi.org/10.1016/C2009-0-48725-7
  37. Mondal, S., Mirdha, B. R., & Mahapatra, S. C., (2009). The science behind the sacredness of Tulsi (Ocimum sanctum Linn.). Indian Journal of Physiology and Pharmacology, 53, 291-306. https://pubmed.ncbi.nlm.nih.gov/20509321/
  38. Mu, C., Sheng, Y., Wang, Q., Amin, A., Li, X., & Xie, Y. (2021) Potential compound from herbal food of Rhizoma Polygonati for treatment of COVID-19 analysed by network pharmacology: Viral and cancer signalling mechanisms. Journal of Functional Foods, 77, 104149. https://doi.org/10.1016/j.jff.2020.104149
  39. Narayana, K. R., Reddy, M. S., Chaluvadi, M. R., & Krishna, D. R., (2001). Bioflavonoids
  40. classification, pharmacological, biochemical effects and therapeutic potential. Indian Journal of Pharmacology, 33, 2-16. https://doi.org/10.1155%2F2013%2F162750
  41. Naz, S., Zahoor, M., Sahibzada, M., Ullah, R., & Alqahtani, A. (2021). COVID-19 and SARS-CoV-2: Everything we know so far – A comprehensive review. Open Chemistry, 19, 548-575. https://doi.org/10.1515/chem-2021-0049
  42. Nieto, G. (2020) A review on applications and uses of the thymus in the food industry. Plants, 9, 1-29. https://doi.org/10.3390/plants9080961
  43. Olorunnisola, S. K., Asiyanbi, Hammed, A. M., & Simsek, S. (2014) Biological properties of lemongrass: An overview. International Food Research Journal, 21, 455-462.
  44. Osman, M., Taie, H. A., Helmy, W., & Amer, H. (2016). Screening for antioxidant, antifungal, and antitumor activities of aqueous extracts of chamomile (Matricaria chamomilla). Egyptian Pharmaceutical Journal, 15, 55-61. https://www.epj.eg.net/text.asp?2016/15/2/55/190402
  45. Paduch, R., Kandefer-Szerszeń, M., Trytek, M., & Fiedurek, J., (2007). Terpenes: Substances useful in human healthcare. Archivum Immunologiae et Therapiae Experimentalis, 55, 315-327. https://doi.org/10.1007/s00005-007-0039-1
  46. Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 12, e7423. https://doi.org/10.7759/cureus.7423
  47. Pereira, L., & Critchley, A. T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognised by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32, 1875-1877. https://doi.org/10.1007/s10811-020-02143-y
  48. Prakash, P., & Gupta, N., (2005). Therapeutic uses of Ocimum sanctum Linn. (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian Journal of Physiology and Pharmacology, 49, 125-131. https://doi.org/10.1097/cad.0b013e328361aca1
  49. Saxena, S., Kumar, S., Hajare, S. N., Gupta, S., Gautam, S., & Ghosh, S. K. (2021). 'BhAVI-23'-A spice-herb based dietary infusion possessing in-vitro antiviral potential. Journal of Ayurveda and Integrative Medicine, 12(2), 312-319. https://doi.org/10.1016/j.jaim.2020.11.005
  50. Sharma, A., Tiwari, S., Deb, M. K., & Marty, J. L. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatments strategies. International Journal of Antimicrobial Agents, 56(2), 106054. https://doi.org/10.1016/j.ijantimicag.2020.106054
  51. Sarkar, S., & Chavali, M. (2020). Artificial Intelligence and Machine Learning Approach towards COVID-19. Nanomed Nanotechnol, 5(3), 000201. https://doi.org/10.23880/nnoa-16000202
  52. Song, J., Zhang, L., Xu, Y., Yang, D., Zhang, L., Yang, S., Zhang, W., Wang, J., Tian, S., Yang, S., Yuan, T., Liu, A., Lv, Q., Li, F., Liu, H., Hou, B., Peng, X., Lu, Y., & Du, G. (2021). The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochemical Pharmacology, 183, 114302. https://doi.org/10.1016/j.bcp.2020.114302
  53. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T., (2005). Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 579, 200-213. https://doi.org/10.1016/j.mrfmmm.2005.03.023
  54. Tahir, A. H., Javed, M. M., & Hussain, Z. (2020). Nutraceuticals and herbal extracts: A ray of hope for COVID19 and related infections (Review). International Journal of Functional Nutrition, 1, 1-8. https://doi.org/10.3892/ijfn.2020.6
  55. Venkatalakshmi, P., Vadivel, V., & Brindha, P. (2016). Role of phytochemicals as immunomodulatory agents: A review. International Journal of Green Pharmacy, 10, 1-18. https://www.greenpharmacy.info/index.php/ijgp/article/view/600
  56. Vishal, C., Abhishek, R., Murthy, C., & Yadav, S. K. (2021). Advancements in research and development to combat COVID‑19 using nanotechnology, Nanotechnology for Environmental Engineering, 6, 1-15. https://doi.org/10.1007/s41204-021-00102-7
  57. WHO Timeline (2020).COVID-19. Available online: https://www.who.int/news/item/29-06-2020-covidtimeline
  58. Wright, L., Frye, J., Gorti, B., Timmermann, B., & Funk, J. (2013). Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Current Pharmaceutical Design, 19, 6218-6225.https://doi.org/10.2174/1381612811319340013
  59. Yao, X., Li, Z., Gong, X., Fu, X., Xiao, X., He, M., Huang, B., & Xu, Z. (2020). Total saponins extracted from Abrus cantoniensis Hance suppress hepatitis B virus replication in vitro and rAAV8-1.3HBV transfected mice. Journal of Ethnopharmacology, 249, 112366. https://doi.org/10.1016/j.jep.2019.112366
  60. Yildirim, I., & Kutlu, T., (2015). Anticancer agents: Saponin and tannin. International Journal of Biological Chemistry, 9, 332-340. https://doi.org/10.3923/ijbc.2015.332.340
  61. Zhang, T., Lo, C. Y., Xiao, M., Cheng, L., Pun Mok, C. K., & Shaw, P. C. (2020) Anti-influenza virus phytochemicals from Radix paeoniae alba and characterisation of their neuraminidase inhibitory activities. Journal of Ethnopharmacology, 253, 112671. https://doi.org/10.1016/j.jep.2020.112671