Main Article Content

Abstract

This study was conducted to extract cellulose and synthesis  carboxymethyl cellulose from flour bran. Fourier Transform Infrared Spectrometer (FT-IR) was used to confirm the existent of the carboxymethyl group. The sample edible films were  prepared using 1, 2, 3, and 4 % CMC, and two types of plasticizers glycerol and  sorbitol, (20, 40 and 60) %. Their qualitative, mechanical, reservation and thermal characteristics were studied. Tensile strength ranged 28-51.3 MPa and elongation percentage ranged between 65.5-91.0 %. The thickness of simple cellulose films were 0.018-0.078 mm. The values of solubility (19.05-36.31%) and the permeability values  of simple cellulose film increased with the increasing of the plasticized ratio.  The highest permeability was 11.99 g.mm/m2.h.kp at 60% glycerol and thermogravimetric analysis for some simple cellulose film plasticized by glycerol were 135, 146.29, 125 and123.23° C.

Keywords

Synthesis Carboxylmethyl cellulose Edible films Extraction

Article Details

How to Cite
Laith, S. A. ., & Al-Hashimi, A. G. . (2019). Mechanical Properties of Carboxymethyl Cellulose Edible Films. Basrah Journal of Agricultural Sciences, 32(1), 68–78. https://doi.org/10.37077/25200860.2019.129

References

  1. Ahmadi, N.R.; Marseno, D.W. & Anggrahini, S. (2005). Ekstraksi Karagenan Eucheuma cottonii dari Perairan Nusa Dua Bali dan Pemanfaatannya sebagai Edible Film Extraction of Carrageenan Eucheuma cottonii from Water Territorial Nusa Two Bali and Benefit as Edible film. Agrosains: 18pp.
  2. Al-Rawi, K.M. & Khalafallah, A.A. M. (2000). Design and analysis of agricultural experiments. 2nd. ed. Ministry High. Educ. Sci. Res. Univ. Mosul. Dar Al Kutub Prin. Publ.: 487pp.
  3. Asl, S.A.; Mousavi, M. & Labbafi, M. (2017). Synthesis and characterization of carboxymethyl cellulose from sugarcane bagasse. J. Food Process. Technol., 8:687. doi: 10.4172/2157-7110.1000687.
  4. Benchabane, A. & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Coll. Polym. Sci., 286(10): 1173-1180.
  5. Bergo, P. & Sobral, P.J.A. ( 2007). Effects of plasticizer on physical properties of pigskin gelatin films. Food Hydrocolloids 21(8): 1285-1289.
  6. Bhattacharya, T. (2013). Techniques of preparing edible protein films: review. Asian J. Sci. Technol., 4(07): 039- 041.
  7. Biswal, D.R. & Singh, R.P. (2004). Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym., 57(4): 379-387.
  8. Chick, J. & Ustunol, Z. (1998). Mechanical and barrier properties of lactic acid and rennet precipitated casein?based edible films. J. Food Sci., 63(6): 1024-1027.
  9. Comstock, C.H.; Love, Jr, J.J.; Bronsteen, R.A.; Lee, W.; Vettraino, I.M.; Huang, R.R. & Lorenz, R.P. (2004). Sonographic detection of placenta accreta in the second and third trimesters of pregnancy. Am. J. Obstet. Gynecol., 190(4): 1135-1140.
  10. Dashipour, A.; Khaksar, R.; Hosseini, H.; Shojaee-Aliabadi, S. & Ghanati, K. (2014). Physical, antioxidant and antimicrobial characteristics of carboxymethyl cellulose edible film cooperated with clove essential oil. Zahedan J. Res. Med. Sci., 16(8): 34- 42.
  11. Dashipour, A.; Razavilar, V.; Hosseini, H.; Shojaee-Aliabadi, S.; German, J. B.; Ghanati, K. & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. Int. J. Biol. Macromol., 72: 606-613.
  12. Din, E.; Vignon, M.; Chanzy, H. & Heux, L. (2002). Mercerization of primary wall cellulose and its implication for the conversion of cellulose. Cellulose, 9(1): 7-18.
  13. Falguera, V.; Quintero, J.P.; Jimenez, A.; Munoz, J.A. & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol., 22(6): 292-303.
  14. Ferreira, F.A.B.; Grossmann, M.V.E.; Mali, S.; Yamashita, F. & Cardoso, L.P. (2009). Effect of relative humidities on microstructural, barrier and mechanical properties of yam starch-monoglyceride films. Braz. Arch. Biol. Technol., 52(6): 1505-1512.
  15. Ghanbarzadeh, B. & Almasi, H. (2011). Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int. J. Biol. Macromol., 48(1): 44-49.
  16. Ghanbarzadeh, B.; Musavi, M.; Oromiehie, A.R.; Rezayi, K.; Rad, E.R. & Milani, J. (2007). Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films. LWT-Food Sci. Technol., 40(7): 1191-1197.
  17. Hu, W.; Liu, S.; Chen, S. & Wang, H. (2011).Preparation and properties of photochromic bacterial cellulose nanofibrous films. Cellulose, 18(3): 655-
  18. Hong, K. M. (2013). Preparation and characterization of carboxymethyl cellulose from sugarcane bagasse. A Project Report . Dept. Chem. Science, Fac. Sci., Univ. Tunku Abdul Rahman: 90pp.
  19. Li, Y.; Shoemaker, C.F.; Ma, J.; Shen, X. & Zhong, F. (2008). Paste viscosity of rice starches of different amylose content and carboxymethylcellulose formed by dry heating and the physical properties of their films. Food Chem., 109(3): 616-623.
  20. Liu, R.; Yu, H. & Huang, Y. (2005). Structure and morphology of cellulose in wheat straw. Cellulose, 12(1): 25-34.
  21. Ma, X.; Chang, P.R. & Yu, J. (2008).
  22. Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites. Carbohydr. Polym., 72(3): 369-375.
  23. Melo, C.D.; Garcia, P. S.; Grossmann, M.V.E.; Yamashita, F.; Antonia, L. H.D. & Mali, S. (2011). Properties of extruded xanthan-starch-clay-nanocomposite films. Braz. Arch. Biol. Technol., 54(6): 1223-1333.
  24. Murray, J.S. (2000). Understanding sibling adaptation to childhood cancer. Issues Compr, Pediatr, Nurs., 23(1): 39-47.
  25. Nor, M.H.M.; Nazmi, N.N.M. & Sarbon,N.M. (2017). Effects of plasticizer concentrations on functional properties of chicken skin gelatin films. Int. Food Res. J., 24(5): 1910-1918.
  26. Ojagh, S.M.; Rezaei, M.; Razavi, S.H. & Hosseini, S.M.H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem., 122(1): 161-166.
  27. Prodpran, T. & Benjakul, S. (2005). Effect of acid and alkaline solubilization on the properties of surimi based film. Songklanakarin J. Sci. Technol., 27(3): 563-574.
  28. Pushpamalar, V.; Langford, S.J.; Ahmad, M. & Lim, Y.Y. (2006). Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym., 64(2): 312-318.
  29. Rachtanapun, P. & Rattanapanone, N. (2011). Synthesis and characterization of carboxymethyl cellulose powder and films from Mimosa pigra. Journal of Applied Polymer Science, 122(5): 3218-3226.
  30. Rachtanapun, P. (2009). Blended films of carboxymethyl cellulose from papaya peel (CMCp) and corn starch. Kasetsart J. (Nat. Sci.), 43(5): 259-26643.
  31. Rachtanapun, P.; Kumthai, S.; Yakee, N. & Uthaiyod, R. (2007). Production of carboxymethylcellulose (CMC) film from papaya peels and its mechanical properties. Ann. Conf. Kasetsart Univ., Bangkok, Thailand: 30 Jan-2 Feb 2007.
  32. Rhim, J.W.; Park, H.M. & Ha, C.S. (2013).Bio-nanocomposites for food packaging applications. Prog. Polym. Sci., 38(10-11): 1629-1652.
  33. Richardson, S. & Gorton, L. (2003). Characterisation of the substituent distribution in starch and cellulose derivatives. Anal. Chim. Acta, 497(1-2): 27-65.
  34. Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M. A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S. M. & Khaksar, R. (2013). Characterization of antioxidant- antimicrobial ?-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52: 116-124.
  35. Sothornvit, R. & Krochta, J.M. (2001). Plasticizer effect on mechanical properties of ?-lactoglobulin films. J. Food Eng., 50(3): 149-155.
  36. Tabari, M. (2017). Investigation of Carboxymethyl Cellulose (CMC) on mechanical properties of cold water fish gelatin biodegradable edible films. Foods, 6(6): 41.
  37. Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future. Trends Food Sci. Technol., 14(3): 71-78.
  38. Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P. & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J., 5(6): 1-8.
  39. Turhan, K.N. & ?ahbaz, F. (2004). Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng., 61(3): 459-466.
  40. Vieira, E.; Salehi, A. & Gylfe, E. (2007). Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia, 50(2): 370-379.
  41. Wang, Q.; Jiang, L. & Wen, Q. (2007). Effect of three extraction methods on the volatile component of Illicium verum Hook. f. analyzed by GC-MS. Wuhan Univ. J. Nat. Sci., 12(3): 529-534.
  42. Xie, X.S.; Cui, S.W., Li, W. & Tsao, R. (2008). Isolation and characterization of wheat bran starch. Food Res. Int., 41(9): 882-887.
  43. Yahya, S.B. (2000). Introduction to Food Engineering, Publishing House and Printing Press, King Saud Univ., Saudi Arabia. Author: Paul Singh, R. and Hardman, Dennis (Authors). (Translated book): 532pp.
  44. Zhang, Y. & Han, J.H. (2006). Plasticization of pea starch films with monosaccharides and polyols. J. Food Sci., 71(6): E253- E261.
  45. Zhong, Q.P. & Xia, W.S. (2008). Fizikalno- kemijska svojstva jestivih zaštitnih filmova dobivenih iz smjese kitozana, škroba manioke i želatine plastificirane glicerolom. Food Technol. Biotechnol., 46(3): 262-269.
  46. Zillo, R.R.; da Silva, P.P.M.; de Oliveira, J.; da Glória, E.M. & Spoto, M.H.F. (2018). Carboxymethylcellulose coating associated with essential oil can increase papaya shelf life. Sci. Hortic., 239: 70-77.