Main Article Content

Abstract

Carotenoids are tetraterpenoid organic pigments found in plants, bacteria, fungi, and algae, and come in a variety of colours including yellow, orange, red, and pink, fund all of these organisms, carotenoids can be complex lipids and other metabolic components. Carotenoids are used in a variety of ways, including as antioxidants, antibacterial agents, and food additives.The present study included the isolation of bacteria producing carotenoids pigments that isolated from different sources (soil, food and air) in Basrah, Iraq. Results showed, that out of 24 isolates isolated from above sources which can be produce carotenoids. Ten of those isolates were gave the highest productivity of pigments. Morphological, biochemical, and gene investigations were performed on all 10 isolates. The 16SrRNA sequence analysis of all isolates was recorded as new strains and put in the BDDJ Gene Bank, and the phylogenetic tree of the isolates was constructed using MEGA 6 software. Those strains that are the primary screening for carotenoids production.Bacterial isolates were characterized and identified based on phenotypic properties and molecular techniques. five strains, belonging to genera  of Plantibacter flavus BKA3, Sphingobacteruim faccium BKA4, Stenotrophomonas pavanii BKA5, Microbacteruim keltanolyticum BKA6, Brachybacteruim muris BKA12, were isolated from soil and four strains, belonging to genera of Kocuria turfanesis BKA8, Kocuria  rosea BKA10, Massilia timonae BKA11, were isolated from air, the strain Pseudomonase cani BkA13 and P. fluorescens BKA2, isolated from food. The carotenoid was extracted by methanol solvent and it’s analyzed by spectrophotometric within 400-600nm and wave length maximum was found at 460nm. The results showed the isolate of K. turfanesis BKA8, reached a height of carotenoid content of 753.11g.gm-1 after 72 hours of shaking culture at 150 rpm in nutrient broth at 27˚C, pH 7.

Keywords

Bacteria Carotenoids Pigments

Article Details

How to Cite
Jaber, B. A. ., Majeed, K. R. ., & Al-Hashimi, A. G. . (2022). Isolation and Identification of New Strains of Bacteria Producing Carotenoids Pigments which Isolated from a Different Sources in Basrah, Iraq. Basrah Journal of Agricultural Sciences, 35(1), 81–93. https://doi.org/10.37077/25200860.2022.35.1.07

References

  1. Bell, J. G., McEvoy, J., Tocher, D. R., & Sargent, J. R. (2000). Depletion of α-tocopherol and astaxanthin in Atlantic salmon (Salmo salar) affects autoxidative defense and fatty acid metabolism. The Journal of Nutrition, 130, 1800-1808. https://doi.org//10.1093/jn/130.7.1800
  2. Benson, H. J. (2001). Microbiological Application: Laboratory Manual in General Microbiology. 8th Edition. The McGraw – Hill, 478pp.
  3. Berman, J., Zorrilla-López, U., Farré, G., Zhu, C., Sandmann, G., Twyman, R. M., Capell T., & Christou, P. (2015). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews, 14, 727-743. https://doi.org/10.1007/s11101-014-9373-1
  4. Bhat, S. V., Khan, S. S., & Amin, T. (2013). Isolation and characterization of pigment producing bacteria from various foods for their possible use as biocolours. International Journal of Recent Scientific Research, 4, 1605-1609. http:// www. recentscientific.com/isolation-and-haracterization-pigment-producing-bacteria-various-foods-their-possible-use-biocolour
  5. Boontosaeng, T., Nimrat S., & Vuthiphandchai, V. (2016). Pigments production of bacteria isolated from dried seafood and capability to inhibit microbial pathogens. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10, 30-34.
  6. Botella‐Pavía, P., & Rodríguez‐Concepción, M. (2006). Carotenoid biotechnology in plants for nutritionally improved foods. Physiologia Plantarum, 126, 369-381.https://doi.org/10.1111/j.1399-3054.2006.00632.x
  7. Buczolits, S., Schumann, P., Weidler, G., Radax, C., & Busse, H.-J. (2003). Brachybacterium muris sp. nov., isolated from the liver of a laboratory mouse strain. International Journal of Systematic and Evolutionary Microbiology, 53, 1955-1960. https://doi.org//10.1099/ijs.0.02728-0
  8. Devyani, M., Shraddha, R., & Bela, N. (2017). Isolation and screening of antioxidant bacterial pigments from different ecological niche. International Journal of Scientific & Engineering Research, 5, 119-125.
  9. Elbendary, A. A., Hessain, A. M., El-Hariri, M. D., Seida, A. A., Moussa, I. M., Mubarak, A. S., Kabli, S. A., Hemeg, H. A., & El Jakee, J. K. (2018). Isolation of antimicrobial producing actinobacteria from soil samples. Saudi Journal of Biological Sciences, 25, 44-46. https://doi.org//10.1016/j.sjbs.2017.05.003
  10. Garrido-Sanz, D., Arrebola, E., Martínez-Granero, F., García-Méndez, S., Muriel, C., Blanco-Romero, E., Martín, M., Rivilla, R., & Redondo-Nieto, M. (2017). Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based in group-specific markers. Frontiers in Microbiology, 8, 413. https://doi.org//10.3389/fmicb.2017.00413
  11. Haddad, M., S., Aghaei, S., & Zargar, M. (2017). Antimicrobial and antioxidant activity of carotenoid pigment produced by native Rhodococcus spp. isolated from soil. International Journal of Molecular and Clinical Microbiology, 7, 809-815. http://www.magiran.com/paper/1965415/?lang=en
  12. Harley, J. P., & Prescott, L. M. (2002). Laboratory Exercises in Microbiology. 5th Edition. The McGraw-Hill Companies, 449 pp.
  13. Husseiny, S. M., Abdelhafez, A. A., Ali, A. A.-A., & Sand, H. M. (2018). Optimization of β-carotene production from Rhodotorula glutinis ATCC 4054 growing on agro-industrial substrate using plackett–burman design. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 88, 1637-1646. https://doi.org/10.1007/s40011-017-0908-2
  14. Jaber, B. A., Majeed, K. R., & Al-Hashimi, A. G. (2021). Antioxidant and antibacterial activity of β-carotene pigment extracted from paracoccus homiensis strain bka7 isolated from Air of Basra, Iraq. Annals of the Romanian Society for Cell Biology, 4, 14006-14028.
  15. Kumar, A., Vishwakarma, H. S., Singh, J., Dwivedi, S., & Kumar, M. (2015). Microbial pigments: Production and their applications in various industries. International Journal of Pharmaceutical, Chemical and Biological Sciences, 5, 203-212.
  16. Lambiase, A. (2014). The Family Sphingobacteriaceae. pp. 907-914. In Rosenberg, E., DeLong, E. F. Lory, S., Stackebrandt, E., & Thompson, F. (Eds.). The Prokaryotes: Other Major Lineages of Bacteria and the Archaea. Springer Berlin Heidelberg, Berlin, Heidelberg. 1028pp. https://doi.org/10.1007/978-3-642-38954-2_136
  17. Learman, D. R., Ahmad, Z., Brookshier, A., Henson, M. W., Hewitt, V., Lis, A., Morrison, C., Robinson, A., Todaro, E., & Wologo, E. (2019). Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. Peer Journal, 6, e6258. https://doi.org/10.7717/peerj.6258
  18. Majeed, K. R., Jaayid, T. A., & Al-Khaeun, S. N. (2016). Isolatation and identification of some types bacteria from shrimp (Metapenaeus affinis) and detection of histamine producing from its. Basrah Journal of Agricultural Sciences, 29, 36-58. https://doi.org/10.33762/bagrs.2016.115379
  19. Malik, K., Tokkas, J., & Goyal, S. (2012). Microbial pigments: A review. International Journal of Microbiology Resource Technology, 1, 361-365.
  20. Manimala, M., & R. Murugesan, R. (2014). In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from a natural source. Journal of Applied and Natural Science, 6, 649-653. https://doi.org/10.31018/jans.v6i2.511
  21. Mayer, E., de Quadros, P. D., & Fulthorpe, R. (2019). Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens endophytes provide host-specific growth promotion of Arabidopsis thaliana, basil, lettuce, and bok choy plants. Applied and Environmental Microbiology, 85, e00383-19. https://doi.org/10.1128/AEM.00383-19
  22. Macfaddin, J. F. (2000). Biochemical tests for the identif ication of medical bacteria. The Williams and Wilkins Co., 912pp.
  23. Mezzomo, N., & Ferreira, S. R. (2016). Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry, 16, 1-16. https://doi.org/10.1155/2016/3164312
  24. Moreira, J. S., Riccetto, A. G. L., Silva, M. T. N. d., & Vilela, M. M. D. S. (2015). Endocarditis by Kocuria rosea in an immunocompetent child. Brazilian Journal of Infectious Diseases, 19, 82-84. https://doi.org//10.1016/j.bjid.2014.09.007
  25. Netzer, R., Stafsnes, M. H., Andreassen, T., Goksøyr, A., Bruheim, P., & Brautaset, T. (2010). Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: Heterologous expression and evidence for diverse and multiple catalytic functions of C50 carotenoid cyclases. Journal of Bacteriology, 192, 5688-5699. https://doi.org//10.1128/JB.00724-10
  26. Ramasamy, A. K., & Udayasuriyan, V. (2006). Isolation and characterization of a yellow pigmented colony forming bacterium for carotenogenesis. Biotechnology, 5, 79-82. https://doi.org/10.3923/biotech.2006.79.82
  27. Ramos, P. L., Van Trappen, S., Thompson, F. L., Rocha, R. C., Barbosa, H. R., De Vos, P., & Moreira-Filho, C. A. (2011). Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 61, 926-931. https://doi.org/10.1099/ijs.0.019372-0
  28. Rodriguez-Amaya, D. B., & Kimura, M. (2004). Harvest Plus handbook for carotenoid analysis. International Food Policy Research Institute (IFPRI) Washington. 57pp.
  29. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1626pp. https://www.sigmaaldrich.com/IQ/en/product/sigma/m3401
  30. Sambrook, J., & Russell, D. W. (2001). Russell molecular cloning: A laboratory manual, III; Cold Spring Harbor Laboratory Press: New York, 2344pp.
  31. Sasidharan, P., Raja, R., Karthik, C., Ranandkumar, S., & Indra Arulselvi, P. (2013). Isolation and characterization of yellow pigment producing Exiguobacterium sp. Journal of Biochemical Toxicology, 4, 632-635.
  32. Scales, B. S., Erb-Downward, J. R., LiPuma, J. J., & Huffnagle, G. B. (2015). Draft genome sequences of five Pseudomonas fluorescens subclade I and II strains, isolated from human respiratory samples. Genome Announcements, 3, e00837-15. https://doi.org/10.1128/genomeA.00837-15
  33. Sharma, R., & Gupta, A. (2014). Differentiation of oral Streptococcal species by haemolysis in blood agar medium in vitro. International Journal of Engineering and Advanced Technology, 4, 143-144.
  34. Shatila, F., Yusef, H., & Holail, H. (2013). Pigment production by Exiguobacterium aurantiacum FH, a novel Lebanese strain. International Journal of Applied Research, 2, 176-191.
  35. Singh, H., Du, J., Yang, J.-E., Yin, C. S., Kook, M., & Yi, T.-H. (2016). Brachybacterium horti sp. nov. isolated from garden soil. International Journal of Systematic and Evolutionary Microbiology, 66, 189-195. https://doi.org/10.1099/ijsem.0.000696
  36. Srinivasan, R., Karaoz, U., Volegova, M., MacKichan, J., Kato-Maeda, M., Miller, S., Nadarajan, R., Brodie, E. L., & Lynch, S. V. (2015). Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS one, 10, e0117617.. https://doi.org/10.1371/journal.pone.0117617
  37. Van Craenenbroeck, A. H., Camps, K., Zachée, P., & Wu, K. L. (2011). Massilia timonae infection presenting as generalized lymphadenopathy in a man returning to Belgium from Nigeria. Journal of Clinical Microbiology, 49, 2763-2765. https://doi.org/10.1128/JCM.00160-11
  38. Varsha, C., & Arpana, J. (2013). Screening of significant nutrient parameters for pigment production from newly isolated organism Planococcus maritimus AHJ_2 using placket Burman design. Journal Microbiology and Biotechnology Research, 3, 79-83.
  39. Yangilar, F., & Yildiz, P. (2016). The final development related microbial pigments and the application in food industry. Journal of Science and Technology, 1, 118-142.https://doi.org/10.18185/eufbed.55880