Main Article Content

Abstract

The study aimed to evaluate the effect of dietary supplements on ruminal digestion and intestinal microbiocenosis of lactating cows. The study was carried out under production conditions on three groups of new black-and-white heifers (10 heads each). Mean live weight of cows was 500±20 kg. The cows of the control group received a basic diet, which included haylage of perennial grasses, corn silage, legume hay, concentrate feed, and molasses. Cows of the experimental groups, in addition to the basal diet (BD), received the Farmatan TM supplement (consists of a balanced combination of tannins, essential oils of clove and cinnamon, sodium acetate, and organic zinc) at a dose of 40 g. head-1 per day (experimental group 1) and a pine tree energy supplement at a dose of 150 g. head-1 per day (experimental group 2). The supplement was mixed with concentrate feed and given once in the morning feeding. In the course of the study, the parameters of ruminal fermentation in experimental animals and the microorganisms of the rumen and the large intestine were studied. At the same time, it was found that the inclusion of the Farmatan TM feed additive (40 g per day) and pine tree energy supplement (150 g per day) in the diet of cows at the beginning of lactation contributed to the strengthening of enzymatic processes in the rumen, which was expressed in an increase in the formation of volatile fatty acids by 7.6 and 20.3%, an increase in the proportion of propionic acid and a slight decrease in the proportion of acetic and butyric acids. When using feed additives (Farmatan TM and pine tree energy supplement), a decrease in the content of Clostridium in the rumen of cows was noted by 26.3 and 30.3% in the 1st and 2nd experimental groups, respectively, compared with the control group. In cows of the experimental groups, a decrease in the content of molds and yeast-like fungi in the rumen was also noted. The results obtained allow recommending the studied additives (Farmatan TM and pine tree energy supplement) to enhance enzymatic processes in the rumen.

Keywords

Clostridium Dietary supplement Microbiocenosis Ruminal digestion

Article Details

How to Cite
Zaitsev, V. V. ., Bogolyubova, N. V. ., Zaitseva, L. M. ., Emelyanova, I. S. ., Korotkiy, V. P. ., & Ryzhov, V. A. . (2022). Effect of Dietary Supplements Farmatan TM and Pine Tree Energy on the Regulation of Ruminal Digestion and Microbiocenosis of Lactating Black and White Cows. Basrah Journal of Agricultural Sciences, 35(2), 99–109. https://doi.org/10.37077/25200860.2022.35.2.07

References

  1. Al-Khafaji, S.A., Alsaadawi, M.A., Al-Yasari, A.M., & Al-Saadawe, M.A. (2021). Article review: Cordia myxa L.: The gift of the nature, A Review. Basrah Journal of Agricultural Sciences, 34(2), 267-277.
  2. https://doi.org/10.37077/25200860.2021.34.2.20
  3. Appolloni E., Pennisi, G., Zauli, I., Carotti, L., Paucek, I., Quaini, S., Orsini, F., & Gianquinto, G. (2021). Beyond vegetables: Effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. Journal of The Science of Food and Agriculture, 102(2), 472-487.
  4. https://doi.org/10.1002/jsfa.11513
  5. Bogolyubova, N.V., Zaytsev, V.V., & Shalamova, S.A. (2018). Methods of regulating physiological and biochemical processes and improving performance of dairy cows summer period. Research Journal of Pharmaceutical, Biological, and Chemical Sciences, 9(4), 1390-1395.
  6. Bonelli, F., Turini, L, Sarri, G, Serra, A, Buccioni, A, & Mele, M. (2018). Oral administration of chestnut tannins to reduce the duration of neonatal calf diarrhea. BMC Veterinary Research, 14(1), 227.
  7. https://doi.org/10.1186/s12917-018-1549-2
  8. Chiba, L. (2014). Rumen microbiology and fermentation. In Chiba, L. (Ed.). Animal Nutrition Handbook. Auburn, AL: Self-published, p. 57-79.
  9. Council of Europe. (1986). The European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes. European Treaty Series No. 123. Strasbourg, March 18, 1986.
  10. https://rm.coe.int/168007a67b
  11. De Nardi, R., Marchesini, G., Li, S., Khafipour, E., Plaizier, K.J.C., Gianesella, M., Ricci, R., Andrighetto, I., & Segato, S. (2016). Metagenomic analysis of rumen microbial population in dairy heifers fed a high grain diet supplemented with dicarboxylic acids or polyphenols. BMC Veterinary Research, 12, 29.
  12. https://doi.org/10.1186/s12917-016-0653-4
  13. Girard, M., Dohme-Meier, F., Wechsler, D., Goy, D., Kreuzer, M., & Bee, G. (2016). Ability of 3 tanniferous forage legumes to modify quality of milk and Gruyère-type cheese. Journal of Dairy Science, 99, 205-220.
  14. https://doi.org/10.3168/jds.2015-9952
  15. Harahap, R.P., Suharti, S., Ridla, M., Laconi, E.B., Nahrowi, N., Irawan, A., Kondo, M., Obitsu, T., & Jayanegara, A. (2022). Meta-analysis of dietary chitosan effects on performance, nutrient utilization, and product characteristics of ruminants. Animal Science Journal, 93(1), e1367.
  16. https://doi.org/10.1111/asj.13676
  17. Hu, Q., Zhou, M., & Wei, S. (2018). Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. Journal of Food Science, 83(6), 1476-1483.
  18. https://doi.org/10.1111/1750-3841.14180
  19. Huws, S. A., Creevey, C. J., Oyama, L. B., Mizrahi, I., Denman, S. E., Popova, M., Muñoz-Tamayo, R., Forano, E., Waters, S. M., Hess, M., Tapio, I., Smidt, H., Krizsan, S. J., Yáñez-Ruiz, D. R., Belanche, A., Guan, L., Gruninger, R. J., McAllister, T. A., Newbold, C. J., Roehe, R., Dewhurst, R. J., Snelling, T. J., Watson, M., Suen, G., Hart, E. H., Kingston-Smith, A.H., Scollan, N.D., do Prado, R. M., Pilau, E. J., Mantovani, H. C., Attwood, G. T., Edwards, J. E., McEwan, N. R., Morrisson, S., Mayorga, O. L., Elliott, C., & Morgavi, D. P. (2018). Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, Present, and Future. Frontiers in Microbiology, 9, 2161.
  20. https://doi.org/10.3389/fmicb.2018.02161
  21. Klebaniuk, R., Kochman, G., Kowalczuk-Vasilev, E., Grela, E.R., Bąkowski, M., Olcha, M., & Dunster, F. (2016). Energy efficiency of diet for periparturient dairy cows supplemented with free fatty acids or glucogenic additives. Medycyna weterynaryjna, 72(12), 760-767.
  22. http://doi.org/10.21521/mw.5599
  23. Kondrakhin, I. P. (Ed.). (2004). Metody veterinarnoi klinicheskoi laboratornoi diagnostiki: spravochnik [Methods of veterinary clinical laboratory diagnostics: A reference book]. Kolos, Moscow: 520pp. (In Russian).
  24. http://booksshare.net/index.php?id1=4&category=biol&author=kondrahin-ip&book=2004
  25. Liu, J., Li, H., Zhu, W., & Mao, S. (2019). Dynamic changes in rumen fermentation and bacterial community following rumen fluid transplantation in a sheep model of rumen acidosis: implications for rumen health in ruminants. The FASEB Journal, 33(7), 8453-8467.
  26. https://doi.org/10.1096/fj.201802456r
  27. Mackie, R. I., McSweeney, C. S., & Aminov, R. I. (2013). Rumen. eLS. John Wiley & Sons, Ltd: Chichester 13pp.
  28. https://doi.org/10.1002/9780470015902.a0029419
  29. Min, B. R., & Solaiman, S. (2018). Comparativeaspects of plant tannins on digestive physiology, nutrition andmicrobial community changes in sheep and goats: A review. Journal of Animal Physiology and Animal Nutrition, 102, 1181-1193.
  30. https://doi.org/10.1111/jpn.12938
  31. Mousavi, A., Hossein Mahdavi, A., Riasi, A., & Soltani-Ghombavani, M. (2018). Efficacy of essential oils combination on performance, ileal bacterial counts, intestinal histology and immunocompetence of laying hens fed alternative lipid sources. Journal of Animal Physiology and Animal Nutrition, 102(5), 1245-1256.
  32. https://doi.org/10.1111/jpn.12942
  33. Oomah, D. B. (2020). Flaxseed By-products. 267-289. In Campos-Vega, R., Oomah, B. D., & Vergara-Castañeda, H. A. (Eds.). Food Wastes and By‐products: Nutraceutical and Health Potential. John Wiley & Sons Ltd. 480pp.
  34. https://doi.org/10.1002/9781119534167.ch9
  35. Orton, T., Rohn, K., Breves, G., & Bred, M. (2020). Alterations in fermentation parameters during and after induction of a subacute rumen acidosis in the rumen simulation technique. Journal of Animal Physiology and Animal Nutrition, 104(6), 1678-1689.
  36. https://doi.org/10.1111/jpn.13412
  37. Plyashchenko, S. I., & Sidorov, V. T. (1979). Natural resistance of the organism of animals. Kolos. 183s.
  38. Váradyová, Z., Mravčáková, D., Holodová, M., Grešáková, Ľ., Pisarčíková, J., Barszcz, M., Taciak, M., Tuśnio, A., Kišidayová, S., & Čobanová, K. (2018). Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. Journal of Animal Physiology and Animal Nutrition, 102(5), 1131-1145.
  39. https://doi.org/10.1111/jpn.12940
  40. Xiao, Y., Xiang, Y., Zhou, W., Chen, J., Li, K., & Yang, H. (2017). Microbial community mapping in intestinal tract of broiler chicken. Poultry Science, 96(5), 1387-1393.
  41. https://doi.org/10.3382/ps/pew372
  42. Yıldızlı, G., Coral, G., & Ayaz, F. (2021). Biochar as a Biocompatible Mild Anti-Inflammatory Supplement for Animal Feed and Agricultural Fields. Chemistry & Biodiversity, 18(6), e2001002.
  43. https://doi.org/10.1002/cbdv.202001002
  44. Yu, C., Zhang, M., Liu, J., Zhang, J., Xu, J., & Xu, W. (2022). Effects of sodium acetate on lipid metabolism, antioxidant capability and cell apoptosis of blunt snout bream (Megalobrama amblycephala) hepatocytes treated by sodium palmitate. Aquaculture Research, 53(3), 1098-1109.
  45. https://doi.org/10.1111/are.15651
  46. Zhang, T., Yang, Y., Liang, Y., Jiao, X., & Zhao, C. (2018). Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients, 10(8), 1055.
  47. https://doi.org/10.3390/nu10081055

Most read articles by the same author(s)