Main Article Content

Abstract

The experiment was conducted during 2017-2018 and 2018-2019 winter seasons at Abu Al-Khaseeb District at basrah /Iraq on sandy loam soil  to study the effect of sulfur at five concentration ( 0 , 500 , 1000, 1500 and 2000) kg. Ha-1, clean salt at three concentration (0, 0.5 and 1.0) ml. L-1, two cultivars of lettuce local and fajr and interaction among them  at electrical conductivity of the irrigation water (7.85 and 9.69) dS.m-1.  Result showed significant reduction in the activity of catalase (CAT) and peroxidase (POD) enzymes and proline content in all treatments of sulfur and clean salt especially at 2000 Kg. Ha-1 sulfur and clean salt at 1.0 ml L-1had significantly decrease in CAT activity (295.80 ? 341.65) U mg–1 FW, POD activity (7.86? 8.98) U mg–1 FW and proline (0.50 ? 0.80) mg g-1DW, comparing with control of CAT activity (663.21, 814.65) U mg–1 FW and POD activity (13.83, 15.52) mg–1 FW and proline (1.19, 2.03) mg g-1DW, respectively for two seasons due to the role of sulfur and clean salt ameliorates the adverse effects of salinity on plants. Fajr lettuce is more salt-tolerant than local due to less antioxidant enzyme levels POD, CAT and proline.

Keywords

Lactuca sativa L. Catalase Peroxidase Sulfur Clean salt

Article Details

How to Cite
Hiji, J. H. ., Jasim, A. M. ., & Jerry, A. N. . (2019). Effect of Sulfur and Clean Salt on Antioxidant Enzymes and Proline Content in Improving Salt Tolerance of Two Lettuce Cultivars Grown in Basrah. Basrah Journal of Agricultural Sciences, 32, 80–89. https://doi.org/10.37077/25200860.2019.142

References

  1. Abdelhamid, M.; E. Eldardiry, E. & Abd El-Hady, M. (2013). Ameliorate salinity effect through sulphur application and its effect on some soil and plant characters under different water quantities. Agric. Sci., 4(1): 39-47.
  2. Al Beyatee, A.H.; Solak, B.H.A. & Al Anee, M.H. (2009). Effect of plant intensity and the level of sulfur addition on growth and yield of sunflower under arid conditions in the western of lraq. Arabic J. Dry Environ., 2(3): 27-43.
  3. Angelini, R.; Bragaloni, M.; Federico, R.; Infantino, A. & Porta-Pugua, A. (1993). Involvement of polyamines, diamine oxidase and peroxidase in resistance of chickpea to Ascochyta rabiei. J. Plant Physiol., 142(6): 704-709.
  4. Ashraf, M. (2009). Biotechnological approach of improving plants salt tolerance using antioxidants as markers. Biotechnol. Adv., 27(1): 84-93.
  5. Bartha, C.; Fodorpataki, L.; Martinez-Ballesta, M.; Popescu, O. & Carvajal, M. (2015). Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. J. Appl. Bot. Food Qual., 88: 42-48.
  6. Bates, L.S.; Waldren, R.P. & Tear, I.D. (1973). Rapid determination of free proline for water stress studies. Plant Soil., 39: 205-207.
  7. Brosnan, J.T. & Brosnan, M.E. (2006). The sulfur-containing amino acids: an overview. J. Nutr., 136(6): 1636-1640.
  8. Chelikan, P.; Fita, I. Loe, C. & Wen, P. (2004).Diversity of structures and properties among catalases. Cell. Mol. Life Sci., 61(2): 192-208.
  9. De Azevedo Neto, A.D.; Prisco, J.T.; Eneas-Filho, J.; De Abreu, C.E.B. & Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot., 56: 87-94.
  10. Eltelib, H.A.; Fujkawa, Y. & Esaka, M. (2012). Overexpression of the acerola (Malpighia glabra) monodehydroascorbate reductase gene in transgenic tobacco plants results in increased ascorbate levels and enhanced tolerance to salt stress. S. Afr. J. Bot., 78: 295-301.
  11. FAO (2016). FAOST. Available online at: http://www.fao.org/faostat/en/#data/QC.
  12. Foyer, C.H. & Noctor, G. (2005). Oxidant and antioxidant signaling in plants: A re?evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ., 28: 1056-1071.
  13. Foyer, C.H.; Lelandais, M. & Kunert, K.J. (1994). Photooxidative stress in plants. Physiol. Plant, 92: 696-717.
  14. Goth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta ,196(2-3): 143-151.
  15. Hare, P.D. & Cress, W.A. (1997). Metabolic implications of stress-Induced proline accumulation in Plants. Plant Growth Regulation, 21: 79-102.
  16. Hela, M.; Nawel, N.; Imen, T.; Hanen, Z.; Imen, B.S.; Raouia, B.M.; Olfa, B.; Rym, K.; Mouhiba, B.N.A.; Abdelali, H.; Lachaâl, M. & Ouerghi, Z. (2011). Salt stress induced changes in germination, lipid peroxidation and antioxidant activities in lettuce (Lactuca sativa L.) seedlings. Afr. J. Biotechnol., 10(65): 14498-14506.
  17. Hossain, Z.; Mandal, A.K.A.; Datta, S.K. & Biseas, A.K. (2007). Development of NaCl tolerant line in chrysanthemum morifoliumramat through shoot organogenesis of selected callus line. J. Biotechnol., 129: 658-667.
  18. Kadhim, A.H. (2016). Role of Agricultural sulfur applied at different rates and times on soil pH, availability of some micronutrients, growth and yield of two wheat cultivars (Triticum aestivum L.). M. Sc. Thesis, Coll. Agric., Univ. Al-Muthanna: 132pp.
  19. Kishor, P.B.K.; Hong, Z.; Miao, G.H.; Hu, C.A.A. & Verma, D.P.S (1995). Overexpression of ?1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 108: 1387-1394.
  20. Maeda, Y. (2019). Effects of calcium application on the salt tolerance and sodium excretion from salt glands in zoysiagrass (Zoysia japonica). Grassland Science, 65: doi.org/10.1111/grs.12234.
  21. McCauley, A. & C. Jones, C. & Olson-Rutz, K. (2017). Soil pH and Organic Matter. Nutrient Management Module No. 8. Montana State Univ. Accessed on 30 March2017 http://landresources.montana.edu/nm/documents/NM8.pdf.
  22. Muhammad, D. & Khattak, R.A. (2011). Wheat yield and chemical composition as influenced by integrated use of gypsum, pressmud and FYM in saline-sodic soil. J. Chem. Soc. Pak., 33: 82-86.
  23. Parida, A.K. & Das, A.B. (2005). Salt tolerance and salinity effects on plants: Rev. Ecotoxicol. Environ. Saf., 60: 324-349.
  24. Rai, M.K.; Kalia, P.K.; Singh, R.; Gangola, M.P. & Dhawan, A.K. (2011). Developing stress tolerant plants through in vitro selection. An over-view of recent progress. Environ. Exp. Bot., 71: 89-98.
  25. Riffat, A. & Ahmad, M.S.A. (2018). Improvement in nutrient contents of maize (Zea mays L.) by sulfur modulation under salt stress. Int. J. Agron. Agric. Res., 12(5): 100-117.
  26. Sairam, R.K. & Tyagi, A. (2004). Physiology and molecular Biology of salinity stress tolerance in plant. Gurr. Sci., 86: 3-10.
  27. Tian, X.; He, M.; Wang, Z.; Zhang, J.; Song, Y.; He, Z. & Dong, Y. (2015). Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regil., 77: 343-356.
  28. Turkan, I. & Demiral, T. (2009). Recent development in understanding salinity tolerance. Environ. Exp. Bot., 67: 2-9.
  29. USDA (2010). Dietary Guidelines for Americans. Washington, DC: U.S. Government Printing Office.
  30. Younis, M.F.; Hasaneen, M.N.A.; Ahmed, A.K. & El-Bialy, D.M.A. (2008). Plant growth, metabolism and adaptation in relation to stress condition XXI. Reversal of harmful NaCl effects in lettuce plant by foliar application with urea. Aust. J. Crop Sci., 2(2): 83-95.
  31. Zhang, C.Y.; Wang, N.N.; Zhang, Y.H.; Feng, Q.Z.; Yang, C.W. & Liu, B. (2013). DNA methylation involved in proline accumulation in response to osmotic stress in rice (Oryza sativa). Genet. Molec. Res., 12: 1269-1277.