Main Article Content
Abstract
The objective of this study was to evaluate the effects of taurine, an amino acid additive, on grass carp Ctenopharyngodon idella fingerlings (3.16 ± 0.14 gm) growth and feed utilization in glass aquaria for 70 days. Before beginning the feeding experiment, 120 fish were acclimatized for 10days in the laboratories of fisheries department and marine resources, Agriculture College, University of Basrah. Fish fed dietary taurine at levels of 1% (T2), 2% (T3), and 3% (T4) were compared to fish fed a control diet with no taurine (0%, T1). The weight gain (WG) in the T1 was 16.95 g, which was significantly (P≤0.05) higher than the other treatments. T1 had a higher (P≤0.05) mean relative growth rate (RGR) (54.89± 5.66 %) than the other treatments. The specific growth rate (SGR) and daily growth rate (DGR) of T1 were 0.72 ± 0.06 % day -1, and 0.28 ±0.01 g, which was also higher (P≤0.05) than other treatments supported with different levels of taurine. Significant differences (P≤0.05) were found in the food conversion ratio (FCR) and food conversion efficiency (FCE) between T1 and the other treatments (T2, T3, and T4). It is clear from the current study that the T1 (0% taurine) better than the other treatments in growth and food utilization indicators. It is concluded from the current study that the addition of taurine (1, 2 and 3%) had inhibited the growth in grass carp fingerlings.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Abdel-Tawwab, M., & Monier, M. N. (2018). Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L., fry to salinity stress. Fish Physiology and Biochemistry, 44, 639-649.
- https://doi.org/10.1007/s10695-017-0459-8
- Al-Feky, S. S. A., El-Sayed, A.-F. M., & Ezzat A. A. (2015). Dietary taurine enhances growth and feed utilization in larval Nile tilapia (Oreochromis niloticus) fed soybean meal-based diets. Aquaculture Nutrition, 22(2), 457-464.
- https://doi.org/10.1111/anu.12266
- Brosnan, J. T. & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. Nutrition Journal, 136(6), 1636S-1640S.
- https://doi.org/10.1093/jn/136.6.1636S
- Cowey, C. B., Cho, C. Y., Sivak, J. G., Weerheim, J. A., & Stuart, D. D. (1992). Methionine intake in rainbow trout (Oncorhynchus mykiss), relationship to cataract formation and the metabolism of methionine. Journal of Nutrition, 122(5), 1154-1163.
- https://doi.org/10.1093/jn/122.5.1154
- Diaz, F., Espina, S., Rodriguez, C., & Soto, F. (1998). Preferred temperature of grass carp, Ctenopharyngodon idella (Valenciennes), and brema carp, Megalobrama amblycephala (Yih), (Pisces, Cyprinidae) in horizontal and vertical gradients. Aquaculture research, 29(9), 643-648.
- https://doi.org/10.1046/j.1365-2109.1998.00254.x
- El-Sayed, A.-F., M. (2013). Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Reviews in Aquaculture, 6(4), 241-255.
- https://doi.org/10.1111/raq.12042
- Ferreira, F. M., Yun, H., Park, Y., Park, G., Choi, S. & Bai, S. C. (2014). Effects of taurine supplementation on the growth performance of juvenile rock bream Oplegnathus fasciatus. Fisheries and Aquatic Science, 17, 255-261.
- https://doi.org/10.5657/FAS.2014.0255
- Fuller, P., & Benson, A., (2015). A Nonindigenous Aquatic Species Database. (Accessed September 2016).
- https://www.sciencebase.gov/catalog/item/53da50a6e4b0477f68736d71
- Gaylord, T. G., Teague, A. M., & Barrows, F. T. (2006). Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). World Aquaculture Society, 37, 509-517.
- https://doi.org/10.1111/j.1749-7345.2006.00064.x
- Goran, S. M. A., Omar, S. S., & Anwer, A. Y. (2016). Water quality and physiological parameters of common carp fingerling fed on Jerusalem artichoke tubers. Polytechnic, 6(3), 502-516.
- Hepher, B. (1988). Nutrition of pond fishes. Cambridge University Press, Cambridge, 388pp.
- Herwig, N. (1979). Handbook of Drugs and Chemicals Used in the Treatment of Fish Disease. Charles, C. Thomas Publisher, Illinois, 272pp.
- Huang, M. Yang, X., Zhou, Y., Ge, J., Davis, D., Dong, Y., Gao, Q., & Dong, S. (2021). Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine Life Science & Technology, 3, 449-462.
- https://doi.org/10.1007/s42995-020-00088-2
- Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. Pp, 1-44. In: Rankin, J. F., & Jensen, F. B. (Eds.). Fish ecophysiology. Chapman and Hall, Great Britain. 421pp.
- https://link.springer.com/chapter/10.1007/978-94-011-2304-4_1
- Kilambi, R. V. & Zadinak, A. (1980). The effect of acclimation on the salinity tolerance of grass carp Ctenopharyngodon idella Val. Journal of Fish Biology, 16, 171-175.
- https://doi.org/10.1111/j.1095-8649.1980.tb03696.x
- Kim, S. K., Matsunari, H., Takeuchi, T., Yokoyama, M., Furuita, H., Murata, Y., & Goto, T., (2008). Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids, 35(1), 161-168.
- https://doi.org/10.1007/s00726-007-0600-6
- Kim, S. K., Takeuchi, T., Yokoyama, M., & Murata, Y., (2003). Effect of dietary supplementation with taurine, β-alanine and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Fisheries Science, 69(2), 242-248.
- https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1444-2906.2003.00614.x
- Kim, S. -K., Takeuchi, T., Yokoyama, M., Murata, Y., Kaneniwa, M., & Sakakura, Y., (2005). Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture, 250(3–4), 765-774.
- https://doi.org/10.1111/j.1444-2906.2008.01602.x
- Li, P., Mai, K., Trushenski, J. & Wu, G. (2008). New developments in fish amino acid nutrition: towards functional and environmentally oriented aqua feeds. Amino Acids, 37(1), 43-53.
- https://doi.org/10.1007/s00726-008-0171-1
- Lin, Y. H. & Lu, R. M. (2020). Dietary taurine supplementation enhances growth and nutrient digestibility in giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquaculture Reports, 18, 100464.
- https://doi.org/10.1016/j.aqrep.2020.100464
- Liu, Y., Yang, P., Hu, H., Li, Y., Dai, J., Zhang, Y., Ai, Q., Xu, W., Zhang, W. & Mai, K. (2018). The tolerance and safety assessment of taurine as additive in a marine carnivorous fish, Scophthalmus maximus L. Aquaculture Nutrition, 24, 461–471.
- https://doi.org/10.1111/anu.12579
- Lovell, R. T. (1989). Nutrition and Feeding of Fish. Van Nostrand Reinhold New York, 260pp.
- http://dx.doi.org/10.1007/978-1-4757-1174-5
- Lunger, A. N., McLean, E., Gaylord, T. G., Kuhn, D., & Craig, S. R., (2007). Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture, 271(1-4), 401-410.
- https://doi.org/10.1016/j.aquaculture.2007.07.006
- Macleod, M. G. (1977). Effects of salinity on food intake absorption and conversion in the rainbow trout (Salmo giardneri). Marine Biology, 43, 93-102.
- https://doi.org/10.1007/BF00391256
- Martinez, J. B., Chatzifotis S., Divanach P., & Takeuchi, T. (2004). Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fisheries Science, 70, 74-79.
- https://doi.org/10.1111/j.1444-2906.2003.00773.x
- Matsunari, H., Takeuchi, T., Takahashi, M., & Mushiake, K., (2005). Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fisheries Science, 71, 1131-1135.
- https://doi.org/10.1111/j.1444-2906.2005.01072.x
- Park, G. S., Takeuchi, T., Yokoyama, M., & Seikai, T., (2002). Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Science, 68(4), 824-829.
- https://doi.org/10.1046/j.1444-2906.2002.00498.x
- Park, S., Kim, H., & Kim, S. -J., (2001). Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochemical Pharmacology, 62(8), 1107-1111.
- https://doi.org/10.1016/S0006-2952(01)00741-9
- Pfeiffer, T. J., & Lovell, R. T. (1990). Responses of grass carp, stocked intensively in earthen ponds, to various supplemental feeding regimes. The Progressive Fish-Culturist, 52, 213-217.
- https://doi.org/10.1577/1548-8640(1990)052<0213:ROGCSI>2.3.CO;2
- Pípalová, I. (2006). A review of grass carp use for aquatic weed control and its impact on water bodies. Journal of Aquatic Plant Management, 44, 1-12.
- https://www.cabi.org/isc/abstract/20063200406
- Ripps, H., & Shen, W. (2012). Review: Taurine: A "very essential" amino acid. Molecular vision, 18, 2673-2686.
- http://www.molvis.org/molvis/v18/a275
- Sakaguchi, M., Murata, M., Daikoku, T., & Arai, T. (1988). Effects of dietary taurine on whole body and tissue taurine levels of guppy and eel. Nippon Suisan Gakkaishi, 54, 1647-1652.
- https://doi.org/10.2331/suisan.54.1647
- Sampath, W. W. H. A, Rathnayake, R. M. D. S, Yang, M., Zhang, W., & Mai, K., (2020). Roles of dietary taurine in fish nutrition. Marine Life Science & Technology, 2, 360-375.
- https://doi.org/10.1007/s42995-020-00051-1
- Shen, G., Huang, Y., Dong, J., Wang, X., Cheng, K., Feng, J., Xu, J., & Ye, J. (2018). Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based metabolomics. Journal of Agricultural and Food Chemistry, 66, 368-377.
- https://doi.org/10.1021/acs.jafc.7b03182
- Shireman, J. V., & Smith, C. R. (1983). Synopsis of biological data on the Grass carp Ctenopharyngodon idella Cuvier and Valeneeinnes, 1844. Fish Fisheries Synopsis No. 135iv, 86pp.
- https://www.cabi.org/ISC/abstract/19841458935
- Sundararajan, R.; Bharampuram, A., & Koduru, R. (2014). A review on phytoconstituents for nephroprotective activity. Pharmacophore, 5(1), 160- 182.
- https://pharmacophorejournal.com/article/a-review-on-phytoconstituents-for-nephroprotective-activity
- Taher, M. M. (2017). Laboratory experiments on cultivation of grass carp Ctenopharyngodon idella (Valenciennes, 1844). Basrah Journal of Agricultural Sciences, 30(2), 91-98.
- https://doi.org/10.37077/25200860.2017.57
- Taher, M. M., Muhammed, S. J., Mojer, A. M. & Al-Dubakel, A. Y. (2022). The effect of some food additives on growth parameters of grass carp Ctenopharyngodon idella fingerlings. Basrah Journal of Agricultural Sciences, 35(1), 120-131.
- https://doi.org/10.37077/ 25200860.2022.35.1.10
- Takagi, S., Murata, H., Goto, T., Endo, M., Yamashita, H., & Ukawa, M. (2008). Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture, 280(1–4), 198-205.
- https://doi.org/10.1016/j.aquaculture.2008.05.012
- Takagi, S., Murata, H., Goto, T., Hayashi, M., Hatate, H., Endo, M., Yamashita, H., & Ukawa, M. (2006). Hemolytic suppression roles of taurine in yellowtail Seriola quinqueradiata fed non-fishmeal diet based on soybean protein. Fisheries Science, 72(3), 546-555.
- https://doi.org/10.1111/j.1444-2906.2006.01183.x
- Takagi, S., Murata, H., Goto, T., Ichiki, T., Munasinghe, D., Endo, M., Matsumoto, T., Sakurai, A., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., & Kuramoto, T. (2005). The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed on diets without fishmeal. Aquaculture Science, 53(3), 279-290.
- https://doi.org/10.11233/aquaculturesci1953.53.279
- Tan, M. & Armbruster, J. W. (2018). Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa, 4476(1), 6-39.
- https://doi.org/10.11646/zootaxa.4476.1.4
- Tiedemann, F. & Gmelin, L. (1827). Einige neue Bestandtheile der Galle des Ochsen. Annalen der Physik, 85(2), 326-337.
- https://doi.org/10.1002/andp.18270850214
- Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1(1), 31-37.
- https://doi.org/10.3945/an.110.1008
- Yang, H., Tian, L., Huang, J., Liang, G., & Liu, Y. (2013). Dietary taurine can improve the hypoxia-tolerance but not the growth performance in juvenile grass carp Ctenopharyngodon idellus. Fish Physiology and Biochemistry, 39, 1071-1078.
- https://link.springer.com/article/10.1007/s10695-012-9763-5
- Yokoyama, M., Takeuchi, T., Park, G. S., & Nakazoe, J., (2001). Hepatic cysteinesulphinate decarboxylase activity in fish. Aquaculture Research, 32(s1), 216-220.
- https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1355-557x.2001.00017.x
- Zhang, Y., Dabrowski, K., Hliwa, P. & Gomulka, P. (2006). Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids, 31, 165-172.
- https://doi.org/10.1007/s00726-006-0345-7
References
Abdel-Tawwab, M., & Monier, M. N. (2018). Stimulatory effect of dietary taurine on growth performance, digestive enzymes activity, antioxidant capacity, and tolerance of common carp, Cyprinus carpio L., fry to salinity stress. Fish Physiology and Biochemistry, 44, 639-649.
https://doi.org/10.1007/s10695-017-0459-8
Al-Feky, S. S. A., El-Sayed, A.-F. M., & Ezzat A. A. (2015). Dietary taurine enhances growth and feed utilization in larval Nile tilapia (Oreochromis niloticus) fed soybean meal-based diets. Aquaculture Nutrition, 22(2), 457-464.
https://doi.org/10.1111/anu.12266
Brosnan, J. T. & Brosnan, M. E. (2006). The sulfur-containing amino acids: An overview. Nutrition Journal, 136(6), 1636S-1640S.
https://doi.org/10.1093/jn/136.6.1636S
Cowey, C. B., Cho, C. Y., Sivak, J. G., Weerheim, J. A., & Stuart, D. D. (1992). Methionine intake in rainbow trout (Oncorhynchus mykiss), relationship to cataract formation and the metabolism of methionine. Journal of Nutrition, 122(5), 1154-1163.
https://doi.org/10.1093/jn/122.5.1154
Diaz, F., Espina, S., Rodriguez, C., & Soto, F. (1998). Preferred temperature of grass carp, Ctenopharyngodon idella (Valenciennes), and brema carp, Megalobrama amblycephala (Yih), (Pisces, Cyprinidae) in horizontal and vertical gradients. Aquaculture research, 29(9), 643-648.
https://doi.org/10.1046/j.1365-2109.1998.00254.x
El-Sayed, A.-F., M. (2013). Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Reviews in Aquaculture, 6(4), 241-255.
https://doi.org/10.1111/raq.12042
Ferreira, F. M., Yun, H., Park, Y., Park, G., Choi, S. & Bai, S. C. (2014). Effects of taurine supplementation on the growth performance of juvenile rock bream Oplegnathus fasciatus. Fisheries and Aquatic Science, 17, 255-261.
https://doi.org/10.5657/FAS.2014.0255
Fuller, P., & Benson, A., (2015). A Nonindigenous Aquatic Species Database. (Accessed September 2016).
https://www.sciencebase.gov/catalog/item/53da50a6e4b0477f68736d71
Gaylord, T. G., Teague, A. M., & Barrows, F. T. (2006). Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). World Aquaculture Society, 37, 509-517.
https://doi.org/10.1111/j.1749-7345.2006.00064.x
Goran, S. M. A., Omar, S. S., & Anwer, A. Y. (2016). Water quality and physiological parameters of common carp fingerling fed on Jerusalem artichoke tubers. Polytechnic, 6(3), 502-516.
Hepher, B. (1988). Nutrition of pond fishes. Cambridge University Press, Cambridge, 388pp.
Herwig, N. (1979). Handbook of Drugs and Chemicals Used in the Treatment of Fish Disease. Charles, C. Thomas Publisher, Illinois, 272pp.
Huang, M. Yang, X., Zhou, Y., Ge, J., Davis, D., Dong, Y., Gao, Q., & Dong, S. (2021). Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine Life Science & Technology, 3, 449-462.
https://doi.org/10.1007/s42995-020-00088-2
Jobling, M. (1993). Bioenergetics: feed intake and energy partitioning. Pp, 1-44. In: Rankin, J. F., & Jensen, F. B. (Eds.). Fish ecophysiology. Chapman and Hall, Great Britain. 421pp.
https://link.springer.com/chapter/10.1007/978-94-011-2304-4_1
Kilambi, R. V. & Zadinak, A. (1980). The effect of acclimation on the salinity tolerance of grass carp Ctenopharyngodon idella Val. Journal of Fish Biology, 16, 171-175.
https://doi.org/10.1111/j.1095-8649.1980.tb03696.x
Kim, S. K., Matsunari, H., Takeuchi, T., Yokoyama, M., Furuita, H., Murata, Y., & Goto, T., (2008). Comparison of taurine biosynthesis ability between juveniles of Japanese flounder and common carp. Amino Acids, 35(1), 161-168.
https://doi.org/10.1007/s00726-007-0600-6
Kim, S. K., Takeuchi, T., Yokoyama, M., & Murata, Y., (2003). Effect of dietary supplementation with taurine, β-alanine and GABA on the growth of juvenile and fingerling Japanese flounder Paralichthys olivaceus. Fisheries Science, 69(2), 242-248.
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1444-2906.2003.00614.x
Kim, S. -K., Takeuchi, T., Yokoyama, M., Murata, Y., Kaneniwa, M., & Sakakura, Y., (2005). Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture, 250(3–4), 765-774.
https://doi.org/10.1111/j.1444-2906.2008.01602.x
Li, P., Mai, K., Trushenski, J. & Wu, G. (2008). New developments in fish amino acid nutrition: towards functional and environmentally oriented aqua feeds. Amino Acids, 37(1), 43-53.
https://doi.org/10.1007/s00726-008-0171-1
Lin, Y. H. & Lu, R. M. (2020). Dietary taurine supplementation enhances growth and nutrient digestibility in giant grouper Epinephelus lanceolatus fed a diet with soybean meal. Aquaculture Reports, 18, 100464.
https://doi.org/10.1016/j.aqrep.2020.100464
Liu, Y., Yang, P., Hu, H., Li, Y., Dai, J., Zhang, Y., Ai, Q., Xu, W., Zhang, W. & Mai, K. (2018). The tolerance and safety assessment of taurine as additive in a marine carnivorous fish, Scophthalmus maximus L. Aquaculture Nutrition, 24, 461–471.
https://doi.org/10.1111/anu.12579
Lovell, R. T. (1989). Nutrition and Feeding of Fish. Van Nostrand Reinhold New York, 260pp.
http://dx.doi.org/10.1007/978-1-4757-1174-5
Lunger, A. N., McLean, E., Gaylord, T. G., Kuhn, D., & Craig, S. R., (2007). Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture, 271(1-4), 401-410.
https://doi.org/10.1016/j.aquaculture.2007.07.006
Macleod, M. G. (1977). Effects of salinity on food intake absorption and conversion in the rainbow trout (Salmo giardneri). Marine Biology, 43, 93-102.
https://doi.org/10.1007/BF00391256
Martinez, J. B., Chatzifotis S., Divanach P., & Takeuchi, T. (2004). Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fisheries Science, 70, 74-79.
https://doi.org/10.1111/j.1444-2906.2003.00773.x
Matsunari, H., Takeuchi, T., Takahashi, M., & Mushiake, K., (2005). Effect of dietary taurine supplementation on growth performance of yellowtail juveniles Seriola quinqueradiata. Fisheries Science, 71, 1131-1135.
https://doi.org/10.1111/j.1444-2906.2005.01072.x
Park, G. S., Takeuchi, T., Yokoyama, M., & Seikai, T., (2002). Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Science, 68(4), 824-829.
https://doi.org/10.1046/j.1444-2906.2002.00498.x
Park, S., Kim, H., & Kim, S. -J., (2001). Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochemical Pharmacology, 62(8), 1107-1111.
https://doi.org/10.1016/S0006-2952(01)00741-9
Pfeiffer, T. J., & Lovell, R. T. (1990). Responses of grass carp, stocked intensively in earthen ponds, to various supplemental feeding regimes. The Progressive Fish-Culturist, 52, 213-217.
https://doi.org/10.1577/1548-8640(1990)052<0213:ROGCSI>2.3.CO;2
Pípalová, I. (2006). A review of grass carp use for aquatic weed control and its impact on water bodies. Journal of Aquatic Plant Management, 44, 1-12.
https://www.cabi.org/isc/abstract/20063200406
Ripps, H., & Shen, W. (2012). Review: Taurine: A "very essential" amino acid. Molecular vision, 18, 2673-2686.
http://www.molvis.org/molvis/v18/a275
Sakaguchi, M., Murata, M., Daikoku, T., & Arai, T. (1988). Effects of dietary taurine on whole body and tissue taurine levels of guppy and eel. Nippon Suisan Gakkaishi, 54, 1647-1652.
https://doi.org/10.2331/suisan.54.1647
Sampath, W. W. H. A, Rathnayake, R. M. D. S, Yang, M., Zhang, W., & Mai, K., (2020). Roles of dietary taurine in fish nutrition. Marine Life Science & Technology, 2, 360-375.
https://doi.org/10.1007/s42995-020-00051-1
Shen, G., Huang, Y., Dong, J., Wang, X., Cheng, K., Feng, J., Xu, J., & Ye, J. (2018). Metabolic effect of dietary taurine supplementation on Nile tilapia (Oreochromis nilotictus) evaluated by NMR-based metabolomics. Journal of Agricultural and Food Chemistry, 66, 368-377.
https://doi.org/10.1021/acs.jafc.7b03182
Shireman, J. V., & Smith, C. R. (1983). Synopsis of biological data on the Grass carp Ctenopharyngodon idella Cuvier and Valeneeinnes, 1844. Fish Fisheries Synopsis No. 135iv, 86pp.
https://www.cabi.org/ISC/abstract/19841458935
Sundararajan, R.; Bharampuram, A., & Koduru, R. (2014). A review on phytoconstituents for nephroprotective activity. Pharmacophore, 5(1), 160- 182.
https://pharmacophorejournal.com/article/a-review-on-phytoconstituents-for-nephroprotective-activity
Taher, M. M. (2017). Laboratory experiments on cultivation of grass carp Ctenopharyngodon idella (Valenciennes, 1844). Basrah Journal of Agricultural Sciences, 30(2), 91-98.
https://doi.org/10.37077/25200860.2017.57
Taher, M. M., Muhammed, S. J., Mojer, A. M. & Al-Dubakel, A. Y. (2022). The effect of some food additives on growth parameters of grass carp Ctenopharyngodon idella fingerlings. Basrah Journal of Agricultural Sciences, 35(1), 120-131.
https://doi.org/10.37077/ 25200860.2022.35.1.10
Takagi, S., Murata, H., Goto, T., Endo, M., Yamashita, H., & Ukawa, M. (2008). Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture, 280(1–4), 198-205.
https://doi.org/10.1016/j.aquaculture.2008.05.012
Takagi, S., Murata, H., Goto, T., Hayashi, M., Hatate, H., Endo, M., Yamashita, H., & Ukawa, M. (2006). Hemolytic suppression roles of taurine in yellowtail Seriola quinqueradiata fed non-fishmeal diet based on soybean protein. Fisheries Science, 72(3), 546-555.
https://doi.org/10.1111/j.1444-2906.2006.01183.x
Takagi, S., Murata, H., Goto, T., Ichiki, T., Munasinghe, D., Endo, M., Matsumoto, T., Sakurai, A., Hatate, H., Yoshida, T., Sakai, T., Yamashita, H., Ukawa, M., & Kuramoto, T. (2005). The green liver syndrome is caused by taurine deficiency in yellowtail, Seriola quinqueradiata fed on diets without fishmeal. Aquaculture Science, 53(3), 279-290.
https://doi.org/10.11233/aquaculturesci1953.53.279
Tan, M. & Armbruster, J. W. (2018). Phylogenetic classification of extant genera of fishes of the order Cypriniformes (Teleostei: Ostariophysi). Zootaxa, 4476(1), 6-39.
https://doi.org/10.11646/zootaxa.4476.1.4
Tiedemann, F. & Gmelin, L. (1827). Einige neue Bestandtheile der Galle des Ochsen. Annalen der Physik, 85(2), 326-337.
https://doi.org/10.1002/andp.18270850214
Wu, G. (2010). Functional amino acids in growth, reproduction, and health. Advances in Nutrition, 1(1), 31-37.
https://doi.org/10.3945/an.110.1008
Yang, H., Tian, L., Huang, J., Liang, G., & Liu, Y. (2013). Dietary taurine can improve the hypoxia-tolerance but not the growth performance in juvenile grass carp Ctenopharyngodon idellus. Fish Physiology and Biochemistry, 39, 1071-1078.
https://link.springer.com/article/10.1007/s10695-012-9763-5
Yokoyama, M., Takeuchi, T., Park, G. S., & Nakazoe, J., (2001). Hepatic cysteinesulphinate decarboxylase activity in fish. Aquaculture Research, 32(s1), 216-220.
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1355-557x.2001.00017.x
Zhang, Y., Dabrowski, K., Hliwa, P. & Gomulka, P. (2006). Indispensable amino acid concentrations decrease in tissues of stomachless fish, common carp in response to free amino acid- or peptide-based diets. Amino Acids, 31, 165-172.