Main Article Content

Abstract

Bioremediation is a branch of biotechnology that employs the use of living organisms, like microalgae and fungi, in the removal of contaminants, pollutants, and toxins from soil, water, and other environments. The experiment was designed to evaluate the efficiency of microorganisms to remove heavy metals by using, two fungi (Aspegillus niger and Candida albicans) with two microalgae (Scenedesmus quadricauda and Tetradesmus nygaardi), in removing heavy metals from liquid media during study period (20 days). For this study, cadmium and lead were selected by different concentrations (5, 15, 35, and 50ppm) of such heavy metals. The results indicate that fungi and microalgae effectively removed a significant amount of heavy metals. With respect to Pb and Cd, the maximum removal of lead for all concentrations (5-50ppm) were, (94, 90, 86.28 and 81.6%) respectively, and maximum cadmium removal were (88, 86.66, 84.57 and 79%) recorded by consortium culture of Scenedesmus quadricauda and Tetradesmus nygaardi on day 20th of the experiment. Statistically there were significant difference (p≤0.05) between control and all treatments for both tested heavy metals.

Keywords

Bioremediation Environmental biotechnology Fungi Heavy metals Microalgae

Article Details

How to Cite
Qader, M. Q. ., & Shekha, Y. A. . (2023). Role of Environmental Biotechnology in Remediation of Heavy Metals by Using Fungal-Microalgal Strains. Basrah Journal of Agricultural Sciences, 36(1), 16–28. https://doi.org/10.37077/25200860.2023.36.1.02

References

  1. Adebowale, K. O., Unuabonah, I. E., & Olu-Owolabi, B. I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. Journal of Hazardous Materials, 134(1-3), 130-139.
  2. https://doi.org/10.1016/j.jhazmat.2005.10.056
  3. Al Ahmed, S. G. (2014). Dairy wastewater treatment using microalgae in Karbala city–Iraq. International Journal of Environment, Ecology,Family and Urban Studie, 4(2), 10
  4. Aloysius, R., Karim, M., & Ariff, A. (1999). The mechanism of cadmium removal from aqueous solution by nonmetabolizing free and immobilized live biomass of Rhizopus oligosporus. World Journal of Microbiology Biotechnology, 15(5), 571-578.
  5. https://doi.org/10.3923/pjbs.1999.74.79
  6. Anahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18(3), 502-508.
  7. https://doi.org/10.1016/j.scient.2011.05.015
  8. Anwer, S. S., & Merkhan, S. (2013). Removal of different dyes by Pseudomonas fluorescens. Journal of Life Sciences, 7(1), 51
  9. APHA. (2012). Standard methods for the examination of water and wastewater (R. B. EW Rice, AD Eaton, LS Clesceri, Ed. 22 ed., Vol. 10).
  10. American Public Health Association, American Water Works Association, Water Environment Federation.
  11. Bai, R. S., & Abraham, T. E. (2003). Studies on chromium (VI) adsorption–desorption using immobilized fungal biomass. Bioresource technology, 87(1), 17-26.
  12. https://doi.org/10.1016/s0960-8524(02)00222-5
  13. Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme Microbial technology, 32(1), 78-91.
  14. https://doi.org/10.1016/S0141-0229(02)00245-4
  15. Becker, E. W. (1994). Microalgae: biotechnology and microbiology, Vol. 10. Cambridge University Press.
  16. Cai, X. H., Traina, S., Logan, T., Gustafson, T., & Sayre, R. (1995). Applications of eukaryotic algae for the removal of heavy metals from water. Molecular Marine Biology Biotechnology, 4(4), 338-344
  17. https://doi.org/10.1007/978-1-4757-5983-9_39
  18. Castañeda, C. S., Almanza-Merchán, P. J., Pinzón, E. H., Cely-Reyes, G. E., & Serrano-Cely, P. A. (2018). Chlorophyll concentration estimation using non-destructive methods in grapes (Vitis vinifera L.) cv. Riesling Becker. Revista Colombiana de Ciencias Hortícolas, 12(2), 329-337
  19. Chekroun, K. B., & Baghour, M. (2013). The role of algae in phytoremediation of heavy metals: a review. journal of Mater Environental Science, 4(6), 873-880.
  20. da Costa, A. C. A., & Leite, S. G. F. (1991). Metals biosorption by sodium alginate immobilizedChlorella homosphaera cells. Biotechnology Letters, 13(8), 559-562
  21. https://doi.org/10.1007/BF01033409
  22. Dhankhar, R., & Hooda, A. (2011). Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental technology, 32(5), 467-491
  23. https://doi.org/10.1080/09593330.2011.572922
  24. Dwivedi, S. (2012). Bioremediation of heavy metal by algae: current and future perspective. Journal of advanced laboratory research in biology, 3(3), 195-199
  25. Elizabeth, K., & Anuradha, T. (2000). Biosorption of hexavalent chromium by non-pathogenic bacterial cell preparations. Indian Journal of Microbiology, 40(4), 263-265.
  26. Fairbrother, A., Wenstel, R., Sappington, K., & Wood, W. (2007). Framework for metals risk assessment. Ecotoxicology Environmental safety, 68(2), 145-227
  27. https://doi.org/10.1016/j.ecoenv.2007.03.015
  28. Gadd, G. M., & White, C. (1993). Microbial treatment of metal pollution—a working biotechnology? Trends in biotechnology, 11(8), 353-359
  29. https://doi.org/10.1016/0167-7799(93)90158-6
  30. Goutam, J., Sharma, J., Singh, R., Sharma, D. (2021). Fungal-Mediated Bioremediation of Heavy Metal–Polluted Environment. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 26. Springer, Singapore.
  31. https://doi.org/10.1007/978-981-15-7455-9_3
  32. Guibal, E., Roulph, C., & Le Cloirec, P. (1992). Uranium biosorption by a filamentous fungus Mucor miehei pH effect on mechanisms and performances of uptake. Water Research, 26(8), 1139-1145.
  33. https://doi.org/10.1016/0043-1354(92)90151-S
  34. Humphrey, A. (2004). Chlorophyll as a color and functional ingredient. Food Science, 69(5), C422-C425.
  35. https://doi.org/10.1111/j.1365-2621.2004.tb10710.x
  36. Igiri, B. E., Okoduwa, S. I., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. Journal of toxicology, 2018, 2568038.
  37. https://doi.org/10.1155/2018/2568038
  38. Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological applications, 11(4), 1027-1045.
  39. https://doi.org/10.2307/3061010
  40. Lakkireddy, K., & Kües, U. (2017). Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations. AMB Express, 7(1), 1-22.
  41. https://doi.org/10.1186%2Fs13568-017-0326-0
  42. Marcello pagano , k. g. (2018). Principles of biostatistics (2nd Edition ed.). Boca Raton, FL. 584.
  43. https://doi.org/10.1201/9780429489624
  44. Mehta, S. K., & Gaur, J. P. (2001). Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecological Engineering, 18(1), 1-13
  45. https://doi.org/10.1016/S0925-8574(00)00174-9
  46. Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., & Chowdhary, P. (2019). Heavy metal contamination: an alarming threat to environment and human health. In Environmental biotechnology: For sustainable future (pp. 103-125. ). Springer.
  47. https://doi.org/10.1007/978-981-10-7284-0_5
  48. Nies, D. H. (1999). Microbial heavy-metal resistance. Applied microbiology biotechnology, 51(6), 730-750.
  49. https://doi.org/10.1007/s002530051457
  50. Nies, D. H., Nies, A., Chu, L., & Silver, S. (1989). Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proceedings of the National Academy of Sciences, 86(19), 7351-7355.
  51. https://doi.org/10.1073%2Fpnas.86.19.7351
  52. Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in microbiology, 13, 824084-824084.
  53. https://doi.org/10.3389/fmicb.2022.824084
  54. Park, D., Yun, Y.-S., Jo, J. H., & Park, J. M. (2005). Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Research, 39(4), 533-540.
  55. https://doi.org/10.1016/j.watres.2004.11.002
  56. Perales-Vela, H. V., Pena-Castro, J. M., & Canizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1-10.
  57. https://doi.org/10.1016/j.chemosphere.2005.11.024
  58. Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renewable Sustainable Energy Reviews, 27, 622-653.
  59. Renuka, N., Sood, A., Prasanna, R., & Ahluwalia, A. S. (2014). Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. South African Journal of Botany, 90, 137-145.
  60. https://doi.org/10.1016/j.sajb.2013.10.017
  61. Sadettin, S., & Dönmez, G. (2006 ). Bioaccumulation of reactive dyes by thermophilic cyanobacteria. Process Biochemistry, 41(4), 836-841.
  62. Sadettin, S., & Dönmez, G. (2007). Simultaneous bioaccumulation of reactive dye and chromium (VI) by using thermophil Phormidium sp. Enzyme Microbial technology, 41(1-2), 175-180.
  63. Salem, H. M., Eweida, E. A., & Farag, A. (2000). Heavy metals in drinking water and their environmental impact on human health. Int Conference on the Environ Hazards Mitigation, Cairo Univ Egypt, Giza, 6 (9). (pp.542-556)
  64. Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2013). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Research, 47(2), 791-801.
  65. https://doi.org/10.1016/j.watres.2012.11.006
  66. Sharma, K. R., Giri, R., & Sharma, R. K. (2022). Efficient bioremediation of metal containing industrial wastewater using white rot fungi. International Journal of Environmental Science Technology, 1-8
  67. https://doi.org/10.1007/s13762-022-03914-5
  68. Sharma, K. R., Naruka, A., Raja, M., & Sharma, R. K. (2022). White rot fungus mediated removal of mercury from wastewater. Water Environment Research, 94(7), e10769.
  69. https://doi.org/10.1002/wer.10769
  70. Sharma, P., Pandey, A. K., Udayan, A., & Kumar, S. (2021). Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresource technology, 326, 124750.
  71. https://doi.org/10.1016/j.biortech.2021.124750
  72. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian journal of pharmacology, 43(3), 246.
  73. https://doi.org/10.4103%2F0253-7613.81505
  74. Vareda, J. P., Valente, A. J., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of environmental management, 246, 101-118.
  75. https://doi.org/10.1016/j.jenvman.2019.05.126
  76. Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44(3), 301-316.
  77. https://doi.org/10.1016/S0304-386X(96)00059-X