Main Article Content
Abstract
Jenoubi cattle breed classified as a Bos indicus L., is one of Iraqi indigenous cattle that kept for milk production purpose, but the influence of fatty acid-binding protein 4 (FABP4) on milk-related traits remain poorly understood. The current study was conducted to investigate the effect of single nucleotide polymorphisms (SNPs) in the FABP4 gene of Jenoubi cows. The DNA samples were extracted from the blood of 21 cows. Along 565-bp nucleotide (nt) amplicon from the intron 2- exon 3- intron 3 of FABP4 was amplified by polymerase chain reaction (PCR) while forward sequencing was used to detect SNPs and results were analyzed using bioinformatics software. The findings resulted the existence of two SNPs (c.3689G>A and c.3709G>C) in the exon 3 and four SNPs (g.3494A>C, g.3531A>T, g.3743T>C and g.3765T>C) in the intron regions. Therefore, three haplotypes of FABP4 gene were obtained in this study based on three SNPs of g.3494A>C, g.3531A>T and g.3765T>C. Nonetheless, those haplotypes were not significantly influencing to the milk quality traits of Jenoubi cows. However, the SNPs examined in this study might not be used as potential DNA marker to improve milk production traits of the current breed.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
- Al-Azhar, Akmal, M., Hambal, M., Sabri, M., & Rosa, T. S. (2020). Effects of polymorphism of myostatin and fatty acid-binding protein 4 genes on the chemical composition of meat in cull female Aceh cattle. Veterinary World, 13(7), 1334-1343.
- https://doi.org/10.14202%2Fvetworld.2020.1334-1343
- Ardicli, S., Samli, H., Alpay, F., Dincel, D., Soyudal, B., & Balci, F. (2017). Association of single nucleotide polymorphisms in the FABP4 gene with carcass characteristics and meat quality in Holstein bulls. Annals of Animal Science, 17(1), 117-130.
- https://doi.org/10.1515/aoas-2016-0045
- Ayres, D. R., Souza, F. R. P., Mercadante, M. E. Z., Fonseca, L. F. S., Tonhati, H., Cyrillo, J. N. S. G., Bonilha, S. F. M., & Albuquerque, L. G. (2010). Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth. Genetics and Molecular Research, 9(4), 2050-2059.
- https://doi.org/10.4238/vol9-4gmr850
- Banos, G., Woolliam, J. A., Woodward, B. W., Forbes, A. B., & Coffey, M. P. (2008). Impact of single nucleotide polymorphism in leptin, leptin receptor, growthhormone receptor and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed and body energy traits of UK Dairy cows. Journal of Dairy Science, 91, 3190-3200.
- https://doi.org/10.3168/jds.2007-0930
- Bionaz, M., & Loor, J. J. (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. The Journal of Nutrition, 138(6), 1019-1024.
- https://doi.org/10.1093/jn/138.6.1019
- Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314-331.
- http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1686077/
- Chen, N., Cai, Y., Chen, Q., Li, R., Wang, K., Huang, Y., Hu, S., Huang, S., Hucai, Z., Zheng, Z., Song, W., Ma, Z., Ma, Y., Dang, R., Zhang, Z., Xu, L., Jia, Y., Liu, S., Yue, X., Deng, W., Zhang, X., Sun, Z., Lan, X., Han, J., Chen, H., Bradley, D. G., Jiang, Y. & Lei, C. (2018). Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9, 2337.
- https://doi.org/10.1038/s41467-018-04737-0
- Cho, S., Park, T. S., Yoon, D. H., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H., & Shin, H. D. (2008). Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. Journal of Biochemistry & Molecular Biology, 41(1), 29-34.
- https://doi.org/10.5483/BMBRep.2008.41.1.029
- Curi, R. A., Chardulo, L. A. L., Arrigoni, M. D. B., Silveira, A. C., & de Oliveira, H. N. (2011). Associations between LEP, DGAT1 and FABP4 gene polymorphisms and carcass and meat traits in Nelore and crossbred beef cattle. Journal of Livestock Science, 135, 244-250.
- https://doi.org/10.1016/j.livsci.2010.07.013
- Dekkers, J. C. M. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science. 82, E313-328.
- https://doi.org/10.2527/2004.8213_supple313x
- Faraj, S. H., Ayied, A. S., & Al-Rishdy, K. A. H. (2019). FSHR gene polymorphisms and protein structure changes of cattle bred in Iraq. International Journal of Scientific & Technology Research, 8(11), 3325-3328.
- http://www.ijstr.org/research-paperpublishing.php?month=nov2019
- Faraj, S. H., Ayied, A. Y., & Al-Rishdy, K. A. H. (2020a). Single nucleotide polymorphisms in the promoter of CYP19 gene in cattle bred in Iraq. Basrah Journal of Agricultural Sciences, 33(1), 89-97.
- https://doi.org/10.37077/25200860.2020.33.1.07
- Faraj, S. H., Ayied, A. Y., & Seger, D. K. (2020b). DGAT1 gene polymorphism and its relationships with cattle milk yield and chemical composition. Periódico Tchê Química, 17, 174-180.
- Fathoni, A., Maharani, D, Sumadi, S., & Hartatik, T. (2019). The allele and genotype distribution in SNP g.408C>G of FABP4 gene in Kebumen Ongole grade cattle. In: Proceedings of 37th International Society for Animal Genetics Conference. Lleida, Spain, 7-12.
- https://repository.ugm.ac.id/id/eprint/276324
- Goszczynski, D. E., Mazzucco, J. P., Ripoli, M. V., Villarreal, E. L., Munoz, A. R., Mezzadra, C. A., Melucci, L. M., & Giovambattista, G. (2017). Giovambattista G. Genetic Variation in FABP4 and Evaluation of Its Effects on Beef Cattle Fat Content. Animal Biotechnology, 28(3), 211-219.
- https://doi.org/10.1080/10495398.2016.1262868
- Hoashi, S., Hinenoya, T., Tanaka, A., Ohsaki, H., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., & Mannen, H. (2008). Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genetics, 9, 84.
- https://doi.org/10.1186%2F1471-2156-9-84
- Hui, T. Y. J., & Burt, A. (2020). Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. Genetics, 21, 21.
- https://doi.org/10.1186/s12863-020-0818-9
- Kaps, M., & Lamberson, W. R. (2004). Biostatistics for Animal Science. London: CABI Publishing; 439 pp.
- http://doi.org/10.1079/9780851998206.0000
- Khatkar, M. S., Thomson, P. C., Tammen, I., & Raadsma, H. (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genetics Selection Evolution, 36(2), 163-190.
- https://doi.org/10.1186/1297-9686-36-2-163
- Kulig, H., Kowalewska-Luczak, I., Zukowski, K., & Kruszynski, W. (2013). FABP3, FABP4 and ANXA9 SNP genotypes in relation to breeding values for milk production traits in Polish Holstein-Friesian cows. Russian Journal of Genetics, 49(8), 981-985.
- https://doi.org/10.1134/S1022795413080085
- Lee, S. H., van der Werf, J. H. J., Lee, S. H., Park, E. W., Oh, S. J., Gibson, J. P., & Thompson, J. M. (2010). Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean cattle). Animal Genetices, 41, 442-444.
- https://doi.org/10.1111/j.1365-2052.2010.02024.x
- Li, Y., Zhou, H., Cheng, L., Hodge, M., Zhao, J., Tung, R., Edwards, G., & Hickford, J. (2019). Effects of FABP4 variation on milk fatty-acidcomposition for dairy cattle grazed on pasturein late lactation. Journal of Dairy Research, 87(1), 32-36.
- https://doi.org/10.1017/S0022029920000011
- Marchitelli, C., Contarini, G., Matteis, G. D., Crisa, A., Pariset, L., Scata, M. C., Catillo, G., Napolitano, F., & Moioli, B. (2013). Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. The Journal of Dairy Research, 80(2), 165-173.
- https://doi.org/10.1017/s002202991300006x
- Nafikov, R. A., Schoonmaker, J. P., Korn, K. T., Noack, K., Garrick, D. J., Koehler, K. J., Minick-Bormann, J., Reecy, J. M., Spurlock, D. E., & Beitz, D. C. (2013). Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein 4 (FABP3 and FABP4) with fatty acid composition of bovine milk. Journal of Dairy Science, 96(9), 6007-6021.
- https://doi.org/10.3168/jds.2013-6703
- Nei, M., & Tajima, F. (1981). Genetic drift andestimation of effective population size. Genetics, 98, 625-640.
- https://doi.org/10.1093/genetics/98.3.625
- Oh, D. Y., Lee, Y. S., La, B. M., & Yeo, J. S. (2012). Identification of the SNP (Single Nucleotide Polymorphism) for fatty acid composition associated with beef-flavor related FABP4 (Fatty Acid Binding Protein 4) in Korean cattle. Asian-australasian Journal of Animal sciences, 25(7), 913-920.
- https://doi.org/10.5713/ajas.2012.12078
- Shin, S. C., Heo, J. P., & Chung, E. R. (2012). Genetic variants of the FABP4 gene are associated with marbling scores and meat quality grades in Hanwoo (Korean cattle). Molecular Biology Reports, 39(5), 5323-5330.
- https://doi.org/10.1007/s11033-011-1331-z
- Takezaki, N., Nei, M., & Tamura, K. (2010). POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Molecular Biology and Evolution, 27(4), 747-52.
- https://doi.org/10.1093/molbev/msp312
- Weir, B. S. (1991). Genetic data analysis II: Methods for discrete population genetic data. Sunderland: Sinauer Associates, Inc. Published. 437pp.
- Yin, B., Fang, J., Zhang, J., Zhang, L., Xu, C., Xu, H., Shao, J., & Xia, G. (2020). Correlations between single nucleotide polymorphisms in FABP4 and meat quality and lipid metabolism gene expression in Yanbian yellow cattle. PloS ONE, 15(6), e0234328.
- https://doi.org/10.17504/protocols.io.bf3zjqp6
- Zhou, H., Cheng, L., Azim, W., Hodge, S., Edwards, G. R., & Hickford, J. G. H. (2015). Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Scientific Reports, 5, 10023.
- https://doi.org/10.1038/srep10023
References
Al-Azhar, Akmal, M., Hambal, M., Sabri, M., & Rosa, T. S. (2020). Effects of polymorphism of myostatin and fatty acid-binding protein 4 genes on the chemical composition of meat in cull female Aceh cattle. Veterinary World, 13(7), 1334-1343.
https://doi.org/10.14202%2Fvetworld.2020.1334-1343
Ardicli, S., Samli, H., Alpay, F., Dincel, D., Soyudal, B., & Balci, F. (2017). Association of single nucleotide polymorphisms in the FABP4 gene with carcass characteristics and meat quality in Holstein bulls. Annals of Animal Science, 17(1), 117-130.
https://doi.org/10.1515/aoas-2016-0045
Ayres, D. R., Souza, F. R. P., Mercadante, M. E. Z., Fonseca, L. F. S., Tonhati, H., Cyrillo, J. N. S. G., Bonilha, S. F. M., & Albuquerque, L. G. (2010). Evaluation of TFAM and FABP4 gene polymorphisms in three lines of Nellore cattle selected for growth. Genetics and Molecular Research, 9(4), 2050-2059.
https://doi.org/10.4238/vol9-4gmr850
Banos, G., Woolliam, J. A., Woodward, B. W., Forbes, A. B., & Coffey, M. P. (2008). Impact of single nucleotide polymorphism in leptin, leptin receptor, growthhormone receptor and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed and body energy traits of UK Dairy cows. Journal of Dairy Science, 91, 3190-3200.
https://doi.org/10.3168/jds.2007-0930
Bionaz, M., & Loor, J. J. (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. The Journal of Nutrition, 138(6), 1019-1024.
https://doi.org/10.1093/jn/138.6.1019
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314-331.
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1686077/
Chen, N., Cai, Y., Chen, Q., Li, R., Wang, K., Huang, Y., Hu, S., Huang, S., Hucai, Z., Zheng, Z., Song, W., Ma, Z., Ma, Y., Dang, R., Zhang, Z., Xu, L., Jia, Y., Liu, S., Yue, X., Deng, W., Zhang, X., Sun, Z., Lan, X., Han, J., Chen, H., Bradley, D. G., Jiang, Y. & Lei, C. (2018). Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9, 2337.
https://doi.org/10.1038/s41467-018-04737-0
Cho, S., Park, T. S., Yoon, D. H., Cheong, H. S., Namgoong, S., Park, B. L., Lee, H. W., Han, C. S., Kim, E. M., Cheong, I. C., Kim, H., & Shin, H. D. (2008). Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle. Journal of Biochemistry & Molecular Biology, 41(1), 29-34.
https://doi.org/10.5483/BMBRep.2008.41.1.029
Curi, R. A., Chardulo, L. A. L., Arrigoni, M. D. B., Silveira, A. C., & de Oliveira, H. N. (2011). Associations between LEP, DGAT1 and FABP4 gene polymorphisms and carcass and meat traits in Nelore and crossbred beef cattle. Journal of Livestock Science, 135, 244-250.
https://doi.org/10.1016/j.livsci.2010.07.013
Dekkers, J. C. M. (2004). Commercial application of marker- and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science. 82, E313-328.
https://doi.org/10.2527/2004.8213_supple313x
Faraj, S. H., Ayied, A. S., & Al-Rishdy, K. A. H. (2019). FSHR gene polymorphisms and protein structure changes of cattle bred in Iraq. International Journal of Scientific & Technology Research, 8(11), 3325-3328.
http://www.ijstr.org/research-paperpublishing.php?month=nov2019
Faraj, S. H., Ayied, A. Y., & Al-Rishdy, K. A. H. (2020a). Single nucleotide polymorphisms in the promoter of CYP19 gene in cattle bred in Iraq. Basrah Journal of Agricultural Sciences, 33(1), 89-97.
https://doi.org/10.37077/25200860.2020.33.1.07
Faraj, S. H., Ayied, A. Y., & Seger, D. K. (2020b). DGAT1 gene polymorphism and its relationships with cattle milk yield and chemical composition. Periódico Tchê Química, 17, 174-180.
Fathoni, A., Maharani, D, Sumadi, S., & Hartatik, T. (2019). The allele and genotype distribution in SNP g.408C>G of FABP4 gene in Kebumen Ongole grade cattle. In: Proceedings of 37th International Society for Animal Genetics Conference. Lleida, Spain, 7-12.
https://repository.ugm.ac.id/id/eprint/276324
Goszczynski, D. E., Mazzucco, J. P., Ripoli, M. V., Villarreal, E. L., Munoz, A. R., Mezzadra, C. A., Melucci, L. M., & Giovambattista, G. (2017). Giovambattista G. Genetic Variation in FABP4 and Evaluation of Its Effects on Beef Cattle Fat Content. Animal Biotechnology, 28(3), 211-219.
https://doi.org/10.1080/10495398.2016.1262868
Hoashi, S., Hinenoya, T., Tanaka, A., Ohsaki, H., Sasazaki, S., Taniguchi, M., Oyama, K., Mukai, F., & Mannen, H. (2008). Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genetics, 9, 84.
https://doi.org/10.1186%2F1471-2156-9-84
Hui, T. Y. J., & Burt, A. (2020). Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. Genetics, 21, 21.
https://doi.org/10.1186/s12863-020-0818-9
Kaps, M., & Lamberson, W. R. (2004). Biostatistics for Animal Science. London: CABI Publishing; 439 pp.
http://doi.org/10.1079/9780851998206.0000
Khatkar, M. S., Thomson, P. C., Tammen, I., & Raadsma, H. (2004). Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genetics Selection Evolution, 36(2), 163-190.
https://doi.org/10.1186/1297-9686-36-2-163
Kulig, H., Kowalewska-Luczak, I., Zukowski, K., & Kruszynski, W. (2013). FABP3, FABP4 and ANXA9 SNP genotypes in relation to breeding values for milk production traits in Polish Holstein-Friesian cows. Russian Journal of Genetics, 49(8), 981-985.
https://doi.org/10.1134/S1022795413080085
Lee, S. H., van der Werf, J. H. J., Lee, S. H., Park, E. W., Oh, S. J., Gibson, J. P., & Thompson, J. M. (2010). Genetic polymorphisms of the bovine fatty acid binding protein 4 gene are significantly associated with marbling and carcass weight in Hanwoo (Korean cattle). Animal Genetices, 41, 442-444.
https://doi.org/10.1111/j.1365-2052.2010.02024.x
Li, Y., Zhou, H., Cheng, L., Hodge, M., Zhao, J., Tung, R., Edwards, G., & Hickford, J. (2019). Effects of FABP4 variation on milk fatty-acidcomposition for dairy cattle grazed on pasturein late lactation. Journal of Dairy Research, 87(1), 32-36.
https://doi.org/10.1017/S0022029920000011
Marchitelli, C., Contarini, G., Matteis, G. D., Crisa, A., Pariset, L., Scata, M. C., Catillo, G., Napolitano, F., & Moioli, B. (2013). Milk fatty acid variability: effect of some candidate genes involved in lipid synthesis. The Journal of Dairy Research, 80(2), 165-173.
https://doi.org/10.1017/s002202991300006x
Nafikov, R. A., Schoonmaker, J. P., Korn, K. T., Noack, K., Garrick, D. J., Koehler, K. J., Minick-Bormann, J., Reecy, J. M., Spurlock, D. E., & Beitz, D. C. (2013). Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein 4 (FABP3 and FABP4) with fatty acid composition of bovine milk. Journal of Dairy Science, 96(9), 6007-6021.
https://doi.org/10.3168/jds.2013-6703
Nei, M., & Tajima, F. (1981). Genetic drift andestimation of effective population size. Genetics, 98, 625-640.
https://doi.org/10.1093/genetics/98.3.625
Oh, D. Y., Lee, Y. S., La, B. M., & Yeo, J. S. (2012). Identification of the SNP (Single Nucleotide Polymorphism) for fatty acid composition associated with beef-flavor related FABP4 (Fatty Acid Binding Protein 4) in Korean cattle. Asian-australasian Journal of Animal sciences, 25(7), 913-920.
https://doi.org/10.5713/ajas.2012.12078
Shin, S. C., Heo, J. P., & Chung, E. R. (2012). Genetic variants of the FABP4 gene are associated with marbling scores and meat quality grades in Hanwoo (Korean cattle). Molecular Biology Reports, 39(5), 5323-5330.
https://doi.org/10.1007/s11033-011-1331-z
Takezaki, N., Nei, M., & Tamura, K. (2010). POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Molecular Biology and Evolution, 27(4), 747-52.
https://doi.org/10.1093/molbev/msp312
Weir, B. S. (1991). Genetic data analysis II: Methods for discrete population genetic data. Sunderland: Sinauer Associates, Inc. Published. 437pp.
Yin, B., Fang, J., Zhang, J., Zhang, L., Xu, C., Xu, H., Shao, J., & Xia, G. (2020). Correlations between single nucleotide polymorphisms in FABP4 and meat quality and lipid metabolism gene expression in Yanbian yellow cattle. PloS ONE, 15(6), e0234328.
https://doi.org/10.17504/protocols.io.bf3zjqp6
Zhou, H., Cheng, L., Azim, W., Hodge, S., Edwards, G. R., & Hickford, J. G. H. (2015). Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Scientific Reports, 5, 10023.