Main Article Content

Abstract

The present study was undertaken to characterize the genetic diversity of the aromatase cytochrome P450 (CYP19) gene in 34 cows (15 local, 14 Holstein, and 5 Crosses) in Iraq. The objectives of the present study are to detect SNPs (mutations) in promoter p1.1 of the CYP19 gene in cattle bred in Iraq using sequencing techniques. We identified five single-nucleotide polymorphisms (SNP) loci of the CYP19 gene that were detected, namely G933T, G994C, A1044G, A1062T, and C1468A. The results showed the presence of 3, 4, and 2 polymorphic sites leading to the construction of 4, 5, and 3 different haplotypes for Holstein, local, and crosses respectively. Haplotype diversity were 0.791, 0.752, and 0.700 respectively. While nucleotide diversity was 0.0017, 0.0022, and 0.0013 respectively. Besides, we carried out a phylogenetic analysis of these sequences to address the evolutionary relationship between the animal species. These fragments were assigned in the GenBank database under the accession numbers: LC490756, LC490757, LC491437, LC491438, LC491439, LC491588, and LC491589.

Keywords

CYP19 gene Iraqi cattle single nucleotide polymorphism Genetic Diversity Phylogenetic tree

Article Details

How to Cite
Faraj, S. H. ., Ayied, A. Y. ., & Al-Rishdy, K. A. H. . (2020). Single Nucleotide Polymorphisms in the Promoter of CYP19 Gene in Cattle Bred in Iraq. Basrah Journal of Agricultural Sciences, 33(1), 89–97. https://doi.org/10.37077/25200860.2020.33.1.07

References

  1. Aken, B.L.; Achuthan, P.; Akanni, W.M.; Amode, R.; Bernsdorff, F.; Bhai, J.; Billis, K.; Carvalho-Silva, D.; Cummins, C.; Clapham, P et (2016). The ensemble gene annotation system. Database., 1-19. https://doi.org/10.1093%2Fdatabase%2Fbaw093.
  2. Amitosh, K. (2018). Molecular characterization of CYP19, FSHR and LHR genes and its association with reproductive traits in Indigenous cattle. Ph.D. Thesis. Coll. Vet. Anim. Sci., Univ. Rajasthan: 141pp. http://krishikosh.egranth.ac.in/handle/1/5810055058
  3. Amitosh, K.; Gahlot, G.C.; Joshi, R.; Ashraf, M. & Ganguly, S. (2017). DNA polymorphism of the CYP19 (Aromatase) gene in Rathi cattle. J. Entomol. Zool. Stud.; 5(6): 1944-1946. https://www.researchgate.net/publication/321825089_DNA_polymorphism_of_Cyp19_Aromatase_gene_in_Rathi_cattle
  4. Ayied, A.Y. & Zaqeer, B.F. (2019). Relationship between ND5 genetic polymorphisms and milk production and the growth of lambs before weaning of Awassi sheep. IJSR, 8(1): 810-814. https://www.ijsr.net/search_index_results_paperid.php?id=ART20194226
  5. Ayied, A.Y.; Al-Badran, A.I.; & Al-Zaalan, A.R. (2018). Assessment of genetic diversity in Iraqi camel breeds using cytochrome b. JAAVS, 6(7): 273-277. http://doi.org/10.17582/journal.aavs/2018/6.7.273.277
  6. Bandelt, H.J.; Forster, P. & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16(1): 37-48. https://academic.oup.com/mbe/article-abstract/16/1/37/993192
  7. Damiani, D. & Damiani, D. (2007). Manejo farmacológico da baixa estatura: o papel dos inibidores da aromatase: Revisão. Jornal de Pediatria, 83(5): 172-177. https://doi.org/10.1590/S0021-75572007000700008
  8. Edea, Z.; Dadi, H.; Kim, S.W.; Dessie, T.; Lee, T.; Kim, H.; Kim, J.J. & Kim, K.S. (2013). Genetic diversity, population structure, and relationships in indigenous cattle populations of Ethiopia and Korean Hanwoo breeds using SNP markers. Front. Genet. 4(35): 1-9. https://doi.org/10.3389/fgene.2013.00035
  9. El-Bayomi, K.M.; Saleh, A.A.; Awad, A.; El-Tarabany, M.S.; El-Qaliouby, H.S.; Afifi, A.; El-Komy, S.; Essawi, W.M.; Almadaly, E.A. & El-Magd, M.A. (2018). Association of CYP19A1 gene polymorphisms with anoestrus in water buffaloes. Reprod. Fert. Develop., 30: 487- 497. https://doi.org/10.1071/RD16528
  10. Faraj, S.H.; Ayied, A.S. & Al-Rishdy, K.A.H. (2019) FSHR gene polymorphisms and protein structure changes of cattle bred in Iraq. IJSTR, 8(11): 3325-3328. http://www.ijstr.org/research-paper-publishing.php?month=nov2019
  11. Gororo, E.; Makuza, S.M.; Chatiza, F.P.; Chidzwondo, F. & Sanyika, T.W. (2018). Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. S. Afr. J. Anim. Sci., 48(1): 128-141. https://doi.org/10.4314/sajas.v48i1.15
  12. Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucl. Acids Symp., 41: 95-98. https://bioedit.software.informer.com/
  13. Jedrzejczak, M.; Grzesiak, W.; Szatkowska, I.; Dybus, A.; Muszy?ska, M. & Zaborski, D. (2011). Association between polymorphisms of CYP19, CYP21, and ER1 genes and milk production traits in Black and White cattle. Turk. J. Vet. Anim. Sci., 35(1): 41-49. https://www.researchgate.net/publication/228496295_Association_between_polymorphisms_of_CYP19_CYP21_and_ER1_genes_and_milk_production_traits_in_Black-and-White_cattle
  14. Kalbe, C.; Furbass, R.; Schwerin, M.& Vanselow, J. (2000). Cis-acting elements regulating the placenta-specific promoter of the bovine Cyp19 gene. J. Mol. Endocrinal., 25: 265-273. https://doi.org/10.1677/jme.0.0250265
  15. Keskin, A.; Öner, Y.; Yilmazba?-mecito?lu, G.; Güner, B.; Karakaya, E.; Elmaci, C. & Gümen, A. (2015). Distributions of CYP19, ER? and PGR allele frequencies between fertile and subfertile holstein-friesian heifers. Kafkas. Univ. Vet. Fak. Derg., 21(6): 893-898. https://doi.org/10.9775/kvfd.2013.8900
  16. Kowalewska-Uczak, I. (2010). Polymorphism of the CYP19 gene and milk production traits of dairy cattle. Turk. J. Vet. Anim. Sci., 34(6): 493-496 . https://doi.org/10.3906/vet-0707-30
  17. Kowalewska-Luczak, I.; Michniewicz, E. & Kulig, H. (2013). Effect of CYP19 SNPs on milk production traits of jersey cows. Acta Sci. Pol., Zootechnica, 12(1), 33-40. https://asp.zut.edu.pl/2013/12_1/asp-2013-12-1-170.pdf
  18. Kuku?ková, V.; Morav?íková, N.; Curik, I.; Sim?i?, M.; Mészáros, G. & Kasarda, R. (2018). Genetic diversity of local cattle. Acta Bioch. Pol., 65(3): 421-424. https://doi.org/10.18388/abp.2017_2347
  19. Kumar, S.; Stecher, G.; Li, M.; Knyaz, C. & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis, across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  20. Lenstra, J.; Groeneveld, L.; Eding, H.; Kantanen, J.; Williams, J.; Taberlet, P.; Nicolazzi, E.; Sölkner, J.; Simianer, H. & Ciani, E. (2012). Molecular tools and analytical approaches for the characterization of farm animal genetic diversity. Anim. Genet., 43: 483-502. https://doi.org/10.1111/j.1365-2052.2011.02309.x
  21. Librado, P. & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11): 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  22. Makina, S.O.; Whitacre, L.K.; Decker, J.E., Taylor, J.F.; MacNeil, M.D.; Scholtz, M.M.; Marle-Köster, E.; Muchadeyi, F.C.; Makgahlela, M.L. & Maiwashe, A. (2016). Insight into the genetic composition of South African Sanga cattle using SNP data from cattle breeds worldwide. Genet. Sel. Evol. (Paris), 48 (1): 88-94. https://doi.org/10.1186/s12711-016-0266-1
  23. Mohamadnejad-Sangdehi, F.; Rahimi-Mianji, G.; Safdari-Shahroudi, M.; Razavi-Sheshdeh, S.A. & Gholami, M. (2015). Distribution of allele frequencies at 5?-flanking region of CYP19 and ER? genes between Iranian simmental and three indigenous cattle breeds. Iranian J. Appl. Anim. Sci., 5(2): 301-307. http://ijas.iaurasht.ac.ir/article_513309.html
  24. Ngono-Ema, P.; Manjeli, Y.; Meutchieyié, F.; Keambou, C.; Wanjala, B.; Desta, A.; Ommeh, S.; Skilton, R. & Djikeng, A. (2014). Genetic diversity of four Cameroonian indigenous cattle breeds using microsatellite markers. J. Livest. Sci., 5: 9-17.
  25. Öner, Y.; Y?lmaz, O.; Eri?, C.; Ata, N.; Ünal, C. & Koncagül, S. (2019). Genetic diversity and population structure of Turkish native cattle breeds. S. Afr. J. Anim. Sci., 49(4): 628-635. http://doi.org/10.4314/sajas.v49i4.4
  26. Owaid, J.M.; Ayied, A.Y. & Ahmed, F.A. (2019). Genetic variation analysis of ATPase gene and its association with milk component in cattle. IJANS, 8(3): 55-60. https://www.iaset.us/journals/international-journals/international-journal-of-applied-and-natural-sciences
  27. Saber, Y.H.; Seida, A.A.; Ragab, R.S.A.; Balabel, E.A.; Hanafi, E.M. & Wahid M.A. (2017). Oxidant/antioxidant status and CYP19 gene polymorphism in crossbred cows in relation to ovarian inactivity. Global Vet., 18(1): 14-19. https://www.idosi.org/gv/gv18(1)17.htm
  28. Sanarana, Y.; Visser, C.; Bosman, L.; Nephawe, K.; Maiwashe, A. & Van Marle-Köster, E. (2016). Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers. Trop. Anim. Health Prod., 48, 379-385. https://doi.org/10.1007/s11250-015-0962-9
  29. Simpson, E.R. & Davis, S.R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis-some new perspectives. Endocrinology., 142: 4589-4594. https://doi.org/10.1210/endo.142.11.8547
  30. Trakovická, A.; Morav?íková, N.; Miluchová, M. & Gábor, M. (2015). Analysis of CYP19 gene polymorphism as a factor affecting milk production of cattle. J. Microbiol. Biotechnol. Food Sci., 4(2): 111-113. https://doi.org/10.5513/JCEA01/19.4.2363
  31. Vega, W.H.O.; Quirino, C.R.; Bartholazzi-Junior, A.; Rua, M.A.S.; Serapiao, R.V. & Oliveira, C.S. (2018). Variants in the CYP19A1 gene can affect in vitro embryo production traits in cattle. J. Assisted Reprod. Genet., 35(12): 2233-2241. https://doi.org/10.1007/s10815-018-1320-4
  32. Yang, W.; Kang, X.; Yang, Q.; Lin, Y. & Fang, M. (2013). Review on the development of genotyping methods for assessing farm animal diversity. J. Anim. Sci. Biotechnol., 4(2): 1-6. https://doi.org/10.1186%2F2049-1891-4-2
  33. Zaborski, D.; Grzesiak, W. & Pilarczyk, R. (2014). Detection of difficult calving’s in the Polish holstein-friesian black and white heifers. J. Appl. Anim. Res., 44(1): 42-53. https://doi.org/10.1080/09712119.2014.987293