Main Article Content

Abstract

Agrobacterium species are responsible for the production of the polysaccharide known as curdlan. The curdlan was produced from 10 isolates that were collected from a variety of local sources, including as agricultural soils, root nodules, and plant roots. The isolates were identified by examinations using morphological, microscopic, and biochemical tests. After testing the isolates to see which ones could produce the most curdlan, the A2 isolate finally emerged with a production capacity of 29.2 g.L-1. According to the findings, the production of curdlan was increased using the modified medium that contained date juice at a concentration of 26.4 mL.100 mL-1 of the production medium. The resultant yield was 30.7 g.L-1, which was the highest possible yield. The identification of curdlan was validated by the utilization of FTIR, NMR, and HPLC techniques. The modified medium had the capability of being utilized in the production of curdlan from agricultural waste products.

Keywords

Agrobacterium leguminum Curdlan Date juice

Article Details

How to Cite
Al-Rumaidh, Y. S. S. ., Al-Sahlany, S. T. G. ., & Ali, H. . I. . (2023). The Impact of Using Date Juice as a Carbon Source on Curdlan Produced by a Local Isolate of Agrobacterium leguminum. Basrah Journal of Agricultural Sciences, 36(1), 149–163. https://doi.org/10.37077/25200860.2023.36.1.13

References

  1. Al-Roomi, F. W., & Al-Sahlany, S. T. G. (2022). Identification and characterization of xanthan gum produced from date juice by a local isolate of bacteria Xanthomonas campestris. Basrah Journal of Agricultural Sciences, 35(1), 35-49.
  2. https://doi.org/10.37077/25200860.2022.35.1.03
  3. Castellano-Hinojosa, A., Correa-Galeote, D., Ramírez-Bahena, M. H., Tortosa, G., González-López, J., Bedmar, E. J., & Peix, Á. (2021). Agrobacterium leguminum sp. nov., isolated from nodules of Phaseolus vulgaris in Spain. International Journal of systematic and Evolutionary Microbiology, 71(12), 005120.
  4. https://doi.org/10.1099/ijsem.0.005120
  5. Ferdous, M. L., Hossain, M. N., Ali, M. O., Islam, M. S., & Yasmin, S. (2021). Morphological, biochemical and molecular identification of the wild strain of Agrobacterium tumefaciens from crown gall infected mango tree. Fundamental and Applied Agriculture, 6(1), 43-49.
  6. https://doi.org/10.5455/faa.136134
  7. Gao, H., Xie, F., Zhang, W., Tian, J., Zou, C., Jia, C., & Jiang, D. (2020). Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis. Carbohydrate Polymers, 245, 116486.
  8. https://doi.org/10.1016/j.carbpol.2020.116486
  9. Jaafar, N. R., Khoiri, N. M., Ismail, N. F., Mahmood, N. A. N., Murad, A. M. A., Bakar, F. D. A., Yajit, N. L. M., & Illias, R. M. (2020). Functional characterisation and product specificity of Endo-β-1, 3-glucanase from alkalophilic bacterium, Bacillus lehensis G1. Enzyme and Microbial Technology, 140, 109625.
  10. https://doi.org/10.1016/j.enzmictec.2020.109625
  11. Kerr, A., & Panagopoulos, C. G. (1977). Biotypes of Agrobacterium radiobacter var. tumefaciens and their biological control. Journal of Phytopathology, 90(2), 172-179.
  12. https://doi.org/10.1111/j.1439-0434.1977.tb03233.x
  13. Khassaf, W. H., Niamah, A. K., & Al-Manhel, A. J. (2019). Study of the optimal conditions of levan production from a local isolate of Bacillus subtilis subsp. subtilis w36. Basrah Journal of Agricultural Sciences, 32(2), 213-222.
  14. https://doi.org/10.37077/25200860.2019.211
  15. Liang, Y., Zhu, L., Ding, H., Gao, M., Zheng, Z., Wu, J., & Zhan, X. (2017). Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Carbohydrate polymers, 157, 1687-1694.
  16. https://doi.org/10.1016/j.carbpol.2016.11.055
  17. Liu, Y., Gu, Q., Ofosu, F. K., & Yu, X. (2016). Production, structural characterization and gel forming property of a new exopolysaccharide produced by Agrobacterium HX1126 using glycerol or d-mannitol as substrate. Carbohydrate Polymers, 136, 917-922.
  18. https://doi.org/10.1016/j.carbpol.2015.09.107
  19. Mangolim, C. S., da Silva, T. T., Fenelon, V. C., Koga, L. N., de Souza Ferreira, S. B., Bruschi, M. L., & Matioli, G. (2017). Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide. PloS One, 12(2), e0171469.
  20. https://doi.org/10.1371/journal.pone.0171469
  21. Mohammed, A. A., & Niamah, A. K. (2022). Identification and antioxidant activity of hyaluronic acid extracted from local isolates of Streptococcus thermophilus. Materials Today: Proceedings, 60, 1523-1529.
  22. https://doi.org/10.1016/j.matpr.2021.12.038
  23. Mousavi, S. A., Österman, J., Wahlberg, N., Nesme, X., Lavire, C., Vial, L., & Lindström, K. (2014). Phylogeny of the Rhizobium–Allorhizobium–Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Systematic and Applied Microbiology, 37(3), 208-215.
  24. https://doi.org/10.1016/j.syapm.2013.12.007
  25. Moselhy, M. A., Lotfy, F. S., Makboul, H. E., & Ali, A. S. (2020). Antimicrobial and antioxidant characteristics of exopolysaccharides produced by Agrobacterium tumefaciens Cs5 and T1. Egyptian Journal of Chemistry, 63(11), 4423-4438.
  26. https://doi.org/10.21608/EJCHEM.2020.266 35.2542
  27. Ortiz Martinez, C., Pereira Ruiz, S., Carvalho Fenelon, V., Rodrigues de Morais, G., Luciano Baesso, M., & Matioli, G. (2016). Characterization of curdlan produced by Agrobacterium sp. IFO 13140 cells immobilized in a loofa sponge matrix, and application of this biopolymer in the development of functional yogurt. Journal of the Science of Food and Agriculture, 96(7), 2410-2417.
  28. https://doi.org/10.1002/jsfa.7357
  29. Ozawa, I., Kawashima, H., & Kijima, M. (2021). Chemically induced strengthening of curdlan alkylcarbamate thermoplastics. Journal of Applied Polymer Science, 139(4), 51547.
  30. https://doi.org/10.1002/app.51547
  31. Popescu, I., Pelin, I. M., Ailiesei, G. L., Ichim, D. L., & Suflet, D. M. (2019). Amphiphilic polysaccharide based on curdlan: Synthesis and behaviour in aqueous solution. Carbohydrate Polymers, 224, 115157.
  32. https://doi.org/10.1016/j.carbpol.2019.115157
  33. Puławska, J., Willems, A., & Sobiczewski, P. (2012). Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. International Journal of Systematic and Evolutionary Microbiology, 62(Pt_4), 895-899.
  34. https://doi:10.1099/ijs.0.032532-0
  35. Salah, R. B., Jaouadi, B., Bouaziz, A., Chaari, K., Blecker, C., Derrouane, C., Attia, H., & Besbes, S. (2011). Fermentation of date palm juice by curdlan gum production from Rhizobium radiobacter ATCC 6466™: Purification, rheological and physico-chemical characterization. LWT-Food Science and Technology, 44(4), 1026-1034.
  36. https://doi.org/10.1016/j.lwt.2010.11.023
  37. Shih, L., Yu, J. Y., Hsieh, C., & Wu, J. Y. (2009). Production and characterization of curdlan by Agrobacterium sp. Biochemical Engineering Journal, 43(1), 33-40.‏
  38. https://doi.org/10.1016/j.bej.2008.08.006
  39. Subbarao, N. S. (1995). Soil microorganisms and plant growth (No. Ed. 3). Science Publishers, Inc.‏
  40. Suflet, D. M., Popescu, I., Pelin, I. M., Nicolescu, A., & Hitruc, G. (2015). Cationic curdlan: Synthesis, characterization and application of quaternary ammonium salts of curdlan. Carbohydrate Polymers, 123, 396-405.
  41. https://doi.org/10.1016/j.carbpol.2015.01.050
  42. Tao, H., Guo, L., Qin, Z., Yu, B., Wang, Y., Li, J., & Cui, B. (2022). Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan. Food Hydrocolloids, 129, 107678.
  43. https://doi.org/10.1016/j.foodhyd.2022.107678
  44. Vatankhah, A., Reezi, S., Izadi, Z., Ghasemi-Varnamkhasti, M., & Motamedi, A. (2022). Development of an ultrasensitive electrochemical biosensor for detection of Agrobacterium tumefaciens in Rosa hybrida L. Measurement, 187, 110320.
  45. https://doi.org/10.1016/j.measurement.2021.110320
  46. Verma, D. K., Niamah, A. K., Patel, A. R., Thakur, M., Sandhu, K. S., Chávez-González, M. L., & Aguilar, C. N. (2020). Chemistry and microbial sources of curdlan with potential application and safety regulations as prebiotic in food and health. Food Research International, 133, 109136.
  47. https://doi.org/10.1016/j.foodres.2020.109136
  48. Watanabe, K., Yamano, M., Masujima, Y., Ohue-Kitano, R., & Kimura, I. (2021). Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice. Biochemistry and Biophysics Reports, 27, 101095.
  49. https://doi.org/10.1016/j.bbrep.2021.101095
  50. Wu, M., Chen, X., Xu, J., & Zhang, H. (2022). Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties. Carbohydrate Polymers, 278, 119003.
  51. https://doi.org/10.1016/j.carbpol.2021.119003
  52. Young, J., Kerr, A., & Sawada, H. (2005). Agrobacterium Conn 1942, 359 AL. Bergey’s Manual® of Systematic Bacteriology, 340-345.
  53. Young, J., Kerr, A., & Sawada, H. (2015). Agrobacterium. Bergey's Manual of Systematics of Archaea and Bacteria, 15pp.
  54. https://doi.org/10.1002/9781118960608.gbm00842