Main Article Content

Abstract

Numerous papers have been published on body cattle angularities subject in a few backward decades. However, the preeminent body angularities to the milk yield are unstipulated assertively. Hence, the current odyssey was to determine the transcendence body angular of dairy cattle interrelated with the milk yield for selection preferences. In total, 121 head of Holstein cows and seven reputable cattle body angularities were engaged as samples and measured variables for investigation. The software R version 4.2.1 and RStudio was operated simultaneously to facilitate statistical analysis. Later, the principal components (PCA), correlation, and regression analysis were carried out in that order. The PCA specified the thurl angle (TLA), hock side view angle (HSA), hock back views angle (HBA), and fore udder angle (FUA) as crucial factors of body cattle angularities. Then, the correlation analysis appointed HBA and TLA in series as the best trait related to milk yields. The regression analysis was merely entrusted to the HBA as a factor for prognosticating milk yield potency. Thus, the upshot of the ongoing exploration prompted the HBA as the main priority for milk yield selection preferences, followed by TLA. Both were usable on the calf, heifer, and cow selection scheme but should be enforced regularly.

Keywords

Body curve Body measurement Correlation Holstein cows Principal component

Article Details

How to Cite
Prabowo, S. ., & Garip, M. . (2023). The Using of Conspicuous of Body Angularities Type Traits to Milk Yields as Dairy Cattle Selection Preferences. Basrah Journal of Agricultural Sciences, 36(1), 238–253. https://doi.org/10.37077/25200860.2023.36.1.19

References

  1. Abdalla, I. M., Lu, X., Nazar, M., Arbab, A. A. I., Xu, T., Yousif, M. H., Mao, Y., & Yang, Z. (2021). Genome-wide association study identifies candidate genes associated with feet and leg conformation traits in Chinese Holstein cattle. Journal of Animals, 11(8), 2259.
  2. https://doi.org/10.3390/ani11082259
  3. Abreu, B. d. S., Barbosa, S. B. P., Silva, E. C. d., Santoro, K. R., Batista, Â. M. V., & Martinez, R. L. V. (2020). Principal component and cluster analyses to evaluate production and milk quality traits. Journal of Revista Ciência Agronômica, 51(3), 20196977.
  4. https://doi.org/10.5935/1806-6690.20200060
  5. Alcantara, L. M., Baes, C. F., de Oliveira Junior, G. A., & Schenkel, F. S. (2022). Conformation traits of Holstein cows and their association with a Canadian economic selection index. Canadian Journal of Animal Science, 102(3), 490-500.
  6. https://doi.org/10.1139/CJAS-2022-0013
  7. Battagin, M., Sartori, C., Biffani, S., Penasa, M., & Cassandro, M. J. (2013). Genetic parameters for body condition score, locomotion, angularity, and production traits in Italian Holstein cattle. Journal of Dairy Science, 96(8), 5344-5351.
  8. https://doi.org/10.3168/jds.2012-6352
  9. Berry, D. P., Buckley, F., Dillon, P., Evans, R. D., & Veerkamp, R. F. (2004). Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows. Irish Journal of Agricultural and Food Research, 161-176.
  10. http://www.jstor.org/stable/25562515
  11. Bewley, J., & Schutz, M. (2008). An interdisciplinary review of body condition scoring for dairy cattle. Journal of The Professional Animal Scientist, 24(6), 507-529.
  12. https://doi.org/10.15232/S1080-7446(15)30901-3
  13. Boettcher, P., Dekkers, J., & Kolstad, B. (1998). Development of an udder health index for sire selection based on somatic cell score, udder conformation, and milking speed. Journal of Dairy Science, 81(4), 1157-1168.
  14. https://doi.org/10.3168/jds.S0022-0302(98)75678-4
  15. Boettcher, P., Dekkers, J., Warnick, L., & Wells, S. (1998). Genetic analysis of clinical lameness in dairy cattle. Journal of Dairy Science, 81(4), 1148-1156.
  16. https://doi.org/10.3168/jds.S0022-0302(98)75677-2
  17. Bretschneider, G., Arias, D. R., & Cuatrin, A. (2015). Comparative evaluation of udder and body conformation traits of first lactation ¾ Holstein x ¼ Jersey versus Holstein cows. Journal of Archivos de Medicina Veterinaria, 47, 85-89.
  18. https://doi.org/10.4067/S0301-732X2015000100014
  19. Capion, N., Thamsborg, S., & Enevoldsen, C. (2008). Conformation of hind legs and lameness in Danish Holstein heifers. Journal of Dairy Science, 91(5), 2089-2097.
  20. https://doi.org/10.3168/jds.2006-457
  21. Cassell, B., Pearson, R., Stoel, J., & Hiemstra, S. (1990). Relationships between sire evaluations for linear type traits and lifetime relative net income from grade or registered daughters. Journal of Dairy Science, 73(1), 198-204.
  22. https://doi.org/10.3168/jds.S0022-0302(90)78664-X
  23. Chapinal, N., Koeck, A., Sewalem, A., Kelton, D., Mason, S., Cramer, G., & Miglior, F. (2013). Genetic parameters for hoof lesions and their relationship with feet and leg traits in Canadian Holstein cows. Journal of Dairy Science, 96(4), 2596-2604.
  24. https://doi.org/10.3168/jds.2012-6071
  25. Çilek, S., & Tekin, M. E. (2006). Calculation of adjustment factors for standardizing lactations to mature age and 305-day and estimation of heritability and repeatability of standardized milk yield of Simmental cattle reared on Kazova state farm. Turkish Journal of Veterinary Animal Science, 30(3), 283-289.
  26. https://journals.tubitak.gov.tr/veterinary/vol30/iss3/1/
  27. Cole, J. B., Wiggans, G. R., Ma, L., Sonstegard, T. S., Lawlor, T. J., Crooker, B. A., Van Tassell, C. P., Yang, J., Wang, S., & Matukumalli, L. K. (2011). Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary US Holstein cows. Journal of BMC genomics, 12(1), 1-17.
  28. https://doi.org/10.1186/1471-2164-12-408
  29. Dahiya, S. (2006). The genetics of udder type scores in dairy cattle-a review. Journal of Agricultural Reviews, 27(1), 53-59.
  30. https://arccjournals.com/journal/agricultural-reviews/ARCC4167
  31. Đedović, R., Bogdanović, V., Stanojević, D., Ismael, H., Janković, D., Trivunović, S., Samolovac, L., & Stamenić, T. (2020). Phenotypic characteristics of linear traits of udder and angularity in Holstein-Friesian cows and their correlation with milk yield traits. Journal of Biotechnology in Animal Husbandry, 36(4), 407-416.
  32. https://doi.org/10.2298/BAH2004407D
  33. Dubey, A., Mishra, S., & Khune, V. (2014). Appraisal of linear type traits in Sahiwal cattle. Indian Journal of Animal Research, 48(3), 258-261.
  34. https://doi.org/10.5958/j.0976-0555.48.3.055
  35. Duru, S., Kumlu, S., & Tuncel, E. (2012). Estimation of variance components and genetic parameters for type traits and milk yield in Holstein cattle. Turkish Journal of Veterinary Animal Science, 36(6), 585-591.
  36. https://doi.org/10.3906/vet-1012-660
  37. Ekman, L., Nyman, A.-K., Landin, H., Magnusson, U., & Waller, K. P. (2018). Mild and severe udder cleft dermatitis—Prevalence and risk factors in Swedish dairy herds. Journal of Dairy Science, 101(1), 556-571.
  38. https://doi.org/10.3168/jds.2017-13133
  39. Fernandes, A. R., Faro, L. E., Vercesi, A. E., Machado, C. H. C., Barbero, L. M., Bittar, E. R., & Igarasi, M. S. (2019). Genetic evolution of milk yield, udder morphology and behavior in Gir dairy cattle. Journal of Revista Brasileira de Zootecnia, 48(2018(56)), 1-10.
  40. https://doi.org/10.1590/rbz4820180056
  41. Gantner, V., Jovanovac, S., Klopčič, M., Cassandro, M., Raguž, N., & Kuterovac, K. (2009). Methods for estimation of daily and lactation milk yields from alternative milk recording scheme in Holstein and Simmental cattle breeds. Italian Journal of Animal Science, 8(4), 519-530.
  42. https://doi.org/10.4081/ijas.2009.519
  43. Gaviria, M. S., & Zuluaga, J. J. E. (2014). Association between conformation traits and reproductive traits in Holstein cows in the department of Antioquia-Colombia. Journal of Revista Facultad Nacional de Agronomía Medellín, 67(2), 7321-7329.
  44. https://doi.org/10.15446/rfnam.v67n2.44174
  45. Gengler, N., Wiggans, G., & Wright, J. (1999). Animal model genetic evaluation of type traits for five dairy cattle breeds. Journal of Dairy Science, 82(6), 1350.e1351-1350.e1322.
  46. https://doi.org/10.3168/jds.S0022-0302(99)75359-2
  47. Giess, L., Jensen, B., Weaber, R., Bormann, J., & Fiske, W. (2018). Feet and leg traits are moderately to lowly heritable in Red Angus cattle. Journal of Kansas Agricultural Experiment Station Research Reports, 4, 1-3.
  48. https://doi.org/10.4148/2378-5977.7533
  49. Giess, L. K., Jensen, B. R., Bormann, J. M., Rolf, M. M., & Weaber, R. L. (2021). Genetic parameter estimates for feet and leg traits in Red Angus cattle. Journal of Animal Science, 99(11), 1-12.
  50. https://doi.org/10.1093/jas/skab256
  51. Godara, A. S., Tomar, A. K. S., Patel, M., Godara, R. S., Bhat, S. A., & Bharati, P. (2015). Body conformation in Tharparkar Cattle as a tool of selection. Journal of Animal Research, 5(3), 423-430.
  52. https://doi.org/10.5958/2277-940X.2015.00073.X
  53. Güler, O., Diler, A., Yanar, M., Aydın, R., & Kocyıgıt, R. (2019). Appraisal of linear type traits in Simmental cows reared on high altitude of Eastern Turkey. Journal of Agricultural Sciences, 26(3), 331-338.
  54. https://doi.org/10.15832/ankutbd.532130
  55. Güler, O., Yanar, M., Aydin, R., Koçyiğit, R., & Diler, A. (2018). The effect of non-genetic factors on the linear type traits in Brown Swiss cows reared in eastern region of Turkey. Alinteri Journal of Agriculture Science, 33(2), 193-200.
  56. https://doi.org/10.28955/alinterizbd.431730
  57. Hahn, M. V., McDaniel, B. T., & Wilk, J. C. (1984). Genetic and environmental variation of hoof characteristics of Holstein cattle. Journal of Dairy Science, 67(12), 2986-2998.
  58. https://doi.org/10.3168/jds.S0022-0302(84)81664-1
  59. Hakim, L., Susanto, A., & Budiarto, A. (2020). Heritability and correlation of linear traits in Holstein cows in Indonesia. International Journal of Dairy Science, 15 (2), 99-107.
  60. https://doi.org/10.3923/ijds.2020.99.107
  61. Higuchi, F. & Daisaku, A. (2021). Golden section in plain radiograms of the hip and pelvis. Journal of Orthopedics & Traumatology, 70(1), 58-64.
  62. https://doi.org/10.5035/nishiseisai.70.58
  63. ICAR. (2022). Appendix 1 of Section 5 of the ICAR Guidelines - The standard trait definition for Dairy Cattle in ICAR Guidelines, The Global Standard for Livestock Data, pp. 1-76.
  64. Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Journal of Philosophical Transactions of The Royal Socitey A, 374(2065), 20150202.
  65. https://doi.org/10.1098/rsta.2015.0202
  66. José, C.-H., Felipe, R.-L., & Adriana, G.-R. (2021). Conformation traits associated with production and milk composition of Holstein cows. Journal of Abanico Veterinary, 11, 1-14.
  67. https://doi.org/10.21929/abavet2021.40
  68. Junior, G. O., Schenkel, F., Alcantara, L., Houlahan, K., Lynch, C., & Baes, C. F. (2021). Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. Journal of Dairy Science, 104(8), 9002-9015.
  69. https://doi.org/10.3168/jds.2021-20227
  70. Juozaitiene, V., Juozaitis, A., & Micikeviciene, R. (2006). Relationship between somatic cell count and milk production or morphological traits of udder in Black-and-White cows. Turkish Journal of Veterinary Animal Science, 30(1), 47-51.
  71. https://journals.tubitak.gov.tr/veterinary/vol30/iss1/7/
  72. Kern, E. L., Cobuci, J. A., Costa, C. N., McManus, C. M., & Braccini Neto, J. (2015). Genetic association between longevity and linear type traits of Holstein cows. Journal of Scientia Agricola, 72(3), 203-209.
  73. https://doi.org/10.1590/0103-9016-2014-0007
  74. Kumari, K. M. (2016). Expression of Fibonacci sequences in plants and animals. Bulletin of Mathematics and Mathematics Research, 4(1), 27-35.
  75. Lawlor, T., Connor, J., Tsuruta, S., & Misztal, I. (2005). New applications of conformation trait data for dairy cow improvement. Journal of Interbull, 33, 119-123.
  76. https://journal.interbull.org/index.php/ib/article/view/1032/1032
  77. Makgahlela, M., Mostert, B., & Banga, C. (2009). Genetic relationships between calving interval and linear type traits in. South Africa Journal of Animal Science, 39(1), 90-92.
  78. https://doi.org/10.4314/sajas.v39i1.61221
  79. Martin, A. A., de Oliveira Jr, G., Madureira, A. M., Miglior, F., LeBlanc, S. J., Cerri, R. L., Baes, C. F., & Schenkel, F. S. (2022). Reproductive tract size and position score: Estimation of genetic parameters for a novel fertility trait in dairy cows. Journal of Dairy Science, 105(10), 8189-8198.
  80. https://doi.org/10.3168/jds.2021-21651
  81. Nazar, M., Abdalla, I. M., Chen, Z., Ullah, N., Liang, Y., Chu, S., Xu, T., Mao, Y., Yang, Z., & Lu, X. (2022). Genome-wide association study for udder conformation traits in Chinese Holstein cattle. Journal of Animals, 12(19), 2542.
  82. https://doi.org/10.3390/ani12192542
  83. Nelsen, R. B. (1998). Correlation, regression lines, and moments of inertia. Journal of The American Statisticians, 52(4), 343-345.
  84. https://doi.org/10.1080/00031305.1998.10480593
  85. Nematollahi, A. F., Rahiminejad, A., & Vahidi, B. (2020). A novel meta-heuristic optimization method based on golden ratio in nature. Journal of Soft Computing, 24(2), 1117-1151.
  86. https://doi.org/10.1007/s00500-019-03949-w
  87. Němcová, E., Štípková, M., & Zavadilová, L. (2011). Genetic parameters for linear type traits in Czech Holstein cattle. Czech Journal of Animal Science, 56(4), 157-162.
  88. https://doi.org/10.17221/1435-CJAS
  89. Němcová, E., Štípková, M., Zavadilová, L., Bouska, J., & Vacek, M. (2007). The relationship between somatic cell count, milk production and six linearly scored type traits in Holstein cows. Czech Journal of Animal Science, 52(12), 437-466.
  90. https://doi.org/10.17221/2337-CJAS
  91. Nuss, K., Haessig, M., & Mueller, J. (2020). Hind limb conformation has limited influence on claw load distribution in dairy cows. Journal of Dairy Science, 103(7), 6522-6532.
  92. https://doi.org/10.3168/jds.2019-18024
  93. Oknowu, F. Z., Asaju, B. L., & Arunaye, F. I. (2020). Breakdown analysis of Pearson Correlation Coefficient and Robust Correlation Methods. IOP Conf. Series: Materials Science and Engineering, 917:012065. IOP Publishing.
  94. https://doi.org/10.1088/1757-899X/917/1/012065
  95. Ring, S. C., Twomey, A. J., Byrne, N., Kelleher, M. M., Pabiou, T., Doherty, M. L., & Berry, D. (2018). Genetic selection for hoof health traits and cow mobility scores can accelerate the rate of genetic gain in producer-scored lameness in dairy cows. Journal of Dairy Science, 101(11), 10034-10047.
  96. https://doi.org/10.3168/jds.2018-15009
  97. Roveglia, C., Niero, G., Bobbo, T., Penasa, M., Finocchiaro, R., Visentin, G., Lopez-Villalobos, N., & Cassandro, M. J. L. S. (2019). Genetic parameters for linear type traits including locomotion in Italian Jersey cattle breed. Journal of Livestock Science, 229(2019), 131-136.
  98. https://doi.org/10.1016/j.livsci.2019.09.023
  99. Salem, N., & Hussein, S. (2019). Data dimensional reduction and principal components analysis. Journal of Procedia Computer Science, 163, 292-299.
  100. https://doi.org/10.1016/j.procs.2019.12.111
  101. Sargent, F., Lytton, V., & Wall Jr, O. (1968). Test interval method of calculating dairy herd improvement association records. Journal of Dairy Science, 51(1), 170-179.
  102. https://doi.org/10.3168/jds.S0022-0302(68)86943-7
  103. Sawa, A., Bogucki, M., Krężel-Czopek, S., & Neja, W. (2013). Association between rump score and course of parturition in cows. Journal of Archives Animal Breeding, 56(1), 816-822.
  104. https://doi.org/10.7482/0003-9438-56-081
  105. Shapiro, L. S., & Swanson, L. (1991). Relationships among rump and rear leg type traits and reproductive performance in Holsteins. Journal of Dairy Science, 74(8), 2767-2773.
  106. https://doi.org/10.3168/jds.S0022-0302(91)78456-7
  107. Short, T., Lawlor Jr, T., & Lee, K. (1991). Genetic parameters for three experimental linear type traits. Journal of Dairy Science, 74(6), 2020-2025.
  108. https://doi.org/10.3168/jds.S0022-0302(91)78372-0
  109. Singh, A., Singh, S., Gupta, D. K., & Bansal, B. K. (2018). Relationship of lameness to body condition score, udder health and milk quality in crossbred dairy cattle. Journal of Veterinarski Arhiv, 88(2), 179-190.
  110. https://doi.org/10.24099/vet.arhiv.160907
  111. Slinker, B. K., & Glantz, S. (2008). Multiple linear regression: accounting for multiple simultaneous determinants of a continuous dependent variable. Journal of Circulation, 117(13), 1732-1737.
  112. https://doi.org/10.1161/CIRCULATIONAHA.106.654376
  113. Sørensen, M., Jensen, J., & Christensen, L. (2000). Udder conformation and mastitis resistance in Danish first-lactation cows: Heritabilities, genetic and environmental corelations. Journal of Acta Agriculturae Scandinavica, 50(2), 72-82.
  114. https://doi.org/10.1080/09064700412331312311
  115. Špehar, M., Štepec, M., & Potočnik, K. (2012). Variance components estimation for type traits in Slovenian Brown Swiss cattle. Journal of Acta agriculturae Slovenica, 100(2), 107-115.
  116. http://hdl.handle.net/20.500.12556/RUL-17716
  117. Tapkı, İ., Tapkı, N., Güzey, Y. Z., & Selvi, M. H. (2020). Genotypic correlations among first lactation profitability, linear type traits and production characteristics of Holstein Friesian cows in Turkey. Journal of Animal Production, 61(2), 83-90.
  118. https://doi.org/10.29185/hayuretim.630155
  119. Toghiani, S. (2011). Genetic parameters and correlations among linear type traits in the first lactation of Holstein Dairy cows. African Journal of Biotechnology, 10(9), 1507-1510.
  120. https://www.ajol.info/index.php/ajb/article/view/92917
  121. Togla, O., Kadyan, S., Bhardwaj, S., Kumar, I., Gujral, S., & Wani, Y. M. (2021). Udder type traits: A selection criterion in indigenous dairy cattle. The Pharma Innovation Journal, 10(11), 2639-2643
  122. Török, E., Komlósi, I., Szőnyi, V., Béri, B., Mészáros, G., & Posta, J. (2021). Combinations of linear type traits affecting the longevity in Hungarian Holstein-Friesian cows. Journal of Animals, 11(11), 3065.
  123. https://doi.org/10.3390/ani11113065
  124. Trukhachev, V., Oliinyk, S., Pokotilo, A., Zakotin, V., Lesnyak, T., & Ershov, A. (2021). Black-and-White cow herd consolidation ways by breeding traits. IOP Conference Series: Earth Environment Science, 852(1): 012107.
  125. https://doi.org/10.1088/1755-1315/852/1/012107
  126. Vacek, M., Stipkova, M., Nemcová, E., & Bouska, J. (2006). Relationships between conformation traits and longevity of Holstein cows in the Czech Republic. Czech Journal of Animal Science, 51(8), 327.
  127. https://doi.org/10.17221/3946-CJAS
  128. Van der Waaij, E., Holzhauer, M., Ellen, E., Kamphuis, C., & De Jong, G. (2005). Genetic parameters for claw disorders in Dutch dairy cattle and correlations with conformation traits. Journal of Dairy Science, 88(10), 3672-3678.
  129. https://doi.org/10.3168/jds.S0022-0302(05)73053
  130. Vinson, W., Pearson, R., & Johnson, L. (1982). Relationships between linear descriptive type traits and body measurements. Journal of Dairy Science, 65(6), 995-1003.
  131. https://doi.org/10.3168/jds.S0022-0302(82)82301-1
  132. Wall, E., White, I., Coffey, M., & Brotherstone, S. (2005). The relationship between fertility, rump angle, and selected type information in Holstein-Friesian cows. Journal of Dairy Science, 88(4), 1521-1528.
  133. https://doi.org/10.3168/jds.S0022-0302(05)72821-6
  134. Wathes, D. C. (2022). Developmental Programming of Fertility in Cattle-Is It a Cause for Concern? Journal of Animals, 12(19), 2654. https://doi.org/10.3390/ani12192654
  135. Xu, L. (2014). Unary linear regression method on principal component analysis. Bio Technology An Indian Journal, 10(22), 13854-13860.
  136. Xu, L., Luo, H., Zhang, X., Lu, H., Zhang, M., Ge, J., Zhang, T., Yan, M., Tan, X., & Huang, X. (2022). Factor analysis of genetic parameters for body conformation traits in dual-purpose Simmental cattle. Journal of Animals, 12(18), 2433.
  137. https://doi.org/10.3390/ani12182433
  138. Xue, X., Ma, Y., Hu, H., Ma, Y., Han, L., Hao, F., & Jiang, Y. (2022). Genetic parameters analysis of conformation traits and milk production traits in Chinese Holsteins. Journal of Research Square, 1, 1-14.
  139. https://doi.org/10.21203/rs.3.rs-2186492/v1