Main Article Content


A numerous clean-up methods of nucleic acid were developed to achieve the requirements of downstream reactions like PCR and sequencing. The methods were varied in their mechanism, efficiency of purification and final product yield. The present study evaluated the efficiency of ethanol-sodium acetate (EOH-NaOAc3) precipitation method in purification of nucleic acid to satisfy downstream reactions requirements. The yield and purity of nucleic acid were considered as the main standard parameters to estimate the efficiency of method. Geneaid gel extraction kit DF100 was considered as a standard method for comparison. The results of methods comparison revealed that EOH-NaOAc3 method was significantly (P=0.000) surpassed the kit method in the yield of purified PCR product (93.24 and 18.37 ng/µl) with no significant differences (P=0.239) in quality (Absorbance (A260/280+) = 1.816 and 1.843) respectively. To determine the productivity of EOH-NaOAc3 method, a specific amount of genomic DNA (G-DNA) (187.93 ng/ µl) was processed and the results showed that EOH-NaOAc3 method was efficiently conserved 89.6% of total processed G-DNA (168.51 ng/µl) accompanied by significant (P=0.03) elevation of DNA purity (A260/280, 3.07 – 2.53).


Ethanol-sodium acetate precipitation purification DNA drying

Article Details

How to Cite
Al-Saad, L. A. ., & Al-Zaalan, A. R. . (2019). Evaluating the efficiency of ethanol precipitation method in purification of gDNA and PCR product: Short Communication. Basrah Journal of Agricultural Sciences, 32, 276–281.


  1. Ali, N.; Rampazzo, R.D.C.P.; Costa, A.; Di. T. & Krieger, M.A. (2017). Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BioMed. Res. Intl., 2017: 1-13.
  2. Boom, R.; Sol, C.J.; Salimans., M. M.; Jansen; C.L.; Dillen, P.M.E.W., & Noordaa, J. van Der. (1990). Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol., 28(3): 495-503. Retrieved from
  3. Clerget, G.; Bourguignon-Igel, V., and Rederstorff, M. (2015). Alcoholic precipitation of small non-coding RNAs. Methods Mol. Biol. (Clifton, N.J.), 1296: 11-16.
  4. Dupont, D.; Depuydt, D. & Binnemans, K. (2015). Overview of the Effect of Salts on Biphasic Ionic Liquid/Water Solvent Extraction Systems: Anion Exchange, Mutual Solubility, and Thermomorphic Properties. J. Phys. Chem. B, 119(22), 6747–
  5. Fregel, R.; González, A. & Cabrera, V.M. (2010). Improved ethanol precipitation of DNA. Electrophoresis, 31(8), 1350–1352.
  7. Gallagher, S.R., & Wiley, E.A. (2008). Current Protocols in Essential Laboratory Techniques. Hoboken, NJ., John Wiley and Sons, Inc.: 806pp.
  8. Hourfar, M.K.; Michelsen, U.; Schmidt, M.; Berger, A.; Seifried, E. & Roth, W.K. (2005). High-throughput purification of viral RNA based on novel aqueous chemistry for nucleic acid isolation. Clin. Chem., 51(7): 1217-1222. clinchem.2005.048603.
  9. Khanuja, S.P.S.; Shasany, A.K.; Darokar, M.P. & Kuman, S. (1999). Rapid Isolation of DNA from Dry and Fresh Samples of Plants Producing Large Amounts of Secondary Metabolites and Essential Oils. Plant Mol.Biol. Rep., 17: 1-7.
  10. Koo, K.; Foegeding, P.M. & Swaisgood, H.E. (1998). Isolation of RNA and DNA fragments using diatomaceous earth. Biotechnology Techniques, 12(7): 549-552.
  11. Krsek, M. & Wellington, E.M.H. (1999). Comparison of different methods for the isolation and purification of total community DNA from soil. Journal of Microbiological Methods, 39(1), 1-16.
  12. Laage, D.; Elsaesser, T. & Hynes, J.T. (2017). Water Dynamics in the Hydration Shells of Biomolecules. Chem. Rev., 117(16): 10694-10725.
  13. Maurya, R.; Kumar, B. & Sundar, S. (2013). Evaluation of salt-out method for the isolation of DNA from whole blood: A pathological approach of dna based diagnosis. Int. J. Life. Sci. Biotechnol. Pharma. Res., 2(2): 53-57.
  14. Oswald, N. (2007). The Basics: How Ethanol Precipitation of DNA and RNA Works. Retrieved July 7, 2018, from
  15. Poh, J.-J., & Gan, S.K.-E. (2014). Comparison of customized spin-column and salt-precipitation finger-prick blood DNA extraction. Biosci. Rep., 34(5):
  16. Schneider, B.; Patel, K. & Berman, H.M. (1998). Hydration of the phosphate group in double-helical DNA. Biophys. J., 75(5): 2422-2434.
  17. Shibayama Y.; Fanucchi, S. & Mhlanga, M.M. (2017). Visualization of Enhancer-Derived Noncoding RNA. Pp: 19-32. In: Ørom, U. A. (Ed.). (2017). Enhancer RNAs (Vol. 1468). New York, NY: Springer New York. 252pp.
  18. Sun, W. (2010). General Procedures. Pp. 49-57 In Wayne, C.S.; Grody, W.; Robert, M.; Nakamura, Frederick, L. K. (Eds.). Molecular Diagnostics: Techniques and Applications for the Clinical Laboratory/1 ed. Academic Press. Inc.: 736pp.
  19. Tan, S.C. & Yiap, B.C. (2009). DNA, RNA, and protein extraction: The past and the present. J. Biomed. Biotechnol., 2009: 10pp.
  20. Till, B.J.; Jankowicz-Cieslak, J.; Huynh, O.A.; Beshir, M.M.; Laport, R.G. & Hofinger, B.J. (2015). Low-Cost Methods for Molecular Characterization of Mutant Plants. tissue desiccation, DNA extraction and mutation discovery: protocols, 1 ed. Springer Int. Publ., Berlin: 35pp.
  21. Vandeventer, P.E.; Mejia, J.; Nadim, A.; Johal, M.S.; & Niemz, A. (2013). DNA adsorption to and elution from silica surfaces: Influence of amino acid buffers. J. Phys. Chem. B, 117(37): 10742-10749.
  22. Vandeventer, P.E.; Lin, J.S.; Zwang, T.J.; Nadim, A.; Johal, M.S. & Niemz, A. (2012). Multiphasic DNA Adsorption to Silica Surfaces under Varying Bu ff er, pH, and Ionic Strength Conditions. J. Phys. Chem., 116: 5661-5670. |
  23. Rederstorff, M. (2015). Small Non-Coding RNAs. Humana Press, New York, NY.:
  24. Zeugen, J.A., & Hartley, J.L. (1985). Ethanol Precipitation of DNA. Focus, 7(4): 1-2.
  25. Zumbo, P. (2013). Ethanol Precipitation. Weill Cornell Medical College publications. Retrieved from: