Main Article Content
Abstract
Xanthan gum is a microbial polysaccharide produced by the bacteria Xanthomonas spp. Seven local isolates of Xanthomonas campestris were used after microscopic and biochemical tests identified them. The isolates were subjected to a screening for xanthan production in medium broth consisting of 20 g.L-1 sucrose, 0.1 g.L-1 urea, and 1 g.L-1 K2HPO4. Isolate X1 showed the highest yield, which reached 6.26 g.l-1. The isolate was confirmed by a 16S rRNA test, and it was recorded in the gene bank with the code MZ262533. Xanthan gum was produced from date juice at a concentration of 3.5 ml (1.5 g glucose.100 ml-1 from the production medium, with the highest yield being 18.9 g.l-1. The resulting xanthan gum was identified by using FTIR, TLC and HPLC techniques, and it was the same chemical as xanthan gum. In the manufacture of xanthan gum and its usage in food, alternative media made from agricultural waste can be employed.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
- Abbaszadeh, A., Lad, M., Janin, M., Morris, G. A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2015). A novel approach to the determination of the pyruvate and acetate distribution in xanthan. Food Hydrocolloids, 44, 162-171. https://doi.org/10.1016/j.foodhyd.2014.08.014
- Al-Gboori, B., & Krepl, V. (2010). Importance of date palms as a source of nutrition. Agricultura Tropica et Subtropica, 43(4), 341-347.
- Barua, R., Alam, M., Salim, M., and Ashrafee, T. S. (2016). Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris. Indian Journal of Experimental Biology 54(2):151-155
- da Silva, L. C. C., Targino, B. N., Furtado, M. M., de Oliveira Pinto, M. A., Rodarte, M. P., & Hungaro, H. M. (2017). Chapter 13. Xanthan: Biotechnological production and applications. 385-422. In Holban, A. M., & Grumezescu, A. M. (Editors). Microbial Production of Food Ingredients and Additives. Academic Press. 518pp. https://doi.org/10.1016/B978-0-12-811520-6.00013-1
- de Sousa Costa, L. A., Inomata Campos, M., Izabel Druzian, J., de Oliveira, A. M., & de Oliveira Junior, E. N. (2014). Biosynthesis of xanthan gum from fermenting shrimp shell: Yield and apparent viscosity. International Journal of Polymer Science, 2014. Article ID 273650 https://doi.org/10.1155/2014/273650
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
-
- Espert, M., Salvador, A., & Sanz, T. (2019). Rheological and microstructural behaviour of xanthan gum and xanthan gum-Tween 80 emulsions during in vitro digestion. Food Hydrocolloids, 95, 454-461. https://doi.org/10.1016/j.foodhyd.2019.05.004
- Gondim, T. S., Pereira, R. G., & Fiaux, S. B. (2019). Xanthan gum production by Xanthomonas axonopodis pv. mangiferaeindicae from glycerin of biodiesel in different media and addition of glucose. Acta Scientiarum Biological Sciences, 41, e43661-e43661. https://doi.org/10.4025/actascibiolsci.v41i1.43661
- Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. (2003). Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 39(2), 249-256. https://doi.org/10.1016/S0032-9592(03)00067-0
- Khassaf, W. H., Niamah, A. K., & Al-Manhel, A. J. (2019). Study of the optimal conditions of levan production from a local isolate of Bacillus subtilis subsp. subtilis w36. Basrah Journal of Agricultural Sciences, 32(2), 213-222. https://doi.org/10.37077/25200860.2019.211
- Khosravi-Darani, K., Reyhani, F. S., Nejad, B. N., & Farhadi, G. B. N. (2011). Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. African Journal of Biotechnology, 10(62), 13520-13527. https://doi.org/10.5897/AJB11.018
- Kyrova, E. I., Dzhalilov, F. S., & Ignatov, A. N. (2020). The role of epiphytic populations in pathogenesis of the genus Xanthomonas bacteria. BIO Web of Conferences, 23(1), 03010. https://doi.org/10.1051/bioconf/20202303010
- Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K., & Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68, 5064–5081. https://doi.org/10.1128/AEM.68.10.5064-5081.2002
- Makut, M. D., Agbonkhese, P. E., & Bello, A. (2018). Production of xanthan gum using Xanthomonas campestris isolated from some plants leaves in Keffi, Nigeria. Asian Journal of Biotechnology and Bioresource Technology, 3(4), 1-9. https://doi.org/10.9734/AJB2T/2018/42025
- Miranda, A. L., Costa, S. S., Assis, D. D. J., de Jesus, C. S., Guimarães, A. G., & Druzian, J. I. (2020). Influence of strain and fermentation time on the production, composition, and properties of xanthan gum. Journal of Applied Polymer Science, 137(15), 48557. https://doi.org/10.1002/app.48557
- Mudoi, P., Bharali, P., & Konwar, B. K. (2013). Study on the effect of pH, temperature and aeration on the cellular growth and xanthan production by Xanthomonas campestris using waste residual molasses. Journal of Bioprocessing and Biotechniques, 3(2), 135. https://doi.org/10.4172/2155-9821.1000135
- Ndongo, S., Beye, M., Dubourg, G., Nguyen, T. T., Couderc, C., Fabrizio, D. P., & Angelakis, E. (2018). Genome analysis and description of Xanthomonas massiliensis sp. nov., a new species isolated from human faces. New Microbes and New Infections, 26, 63-72. https://doi.org/10.1016/j.nmni.2018.06.005
- Nejadmansouri, M., Shad, E., Razmjooei, M., Safdarianghomsheh, R., Delvigne, F., & Khalesi, M. (2020). Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochemical Engineering Journal, 157, 107554. https://doi.org/10.1016/j.bej.2020.107554
- Ocimati, W., Were, E., Groot, J. C., Tittonell, P., Nakato, G. V., & Blomme, G. (2018). Risks posed by intercrops and weeds as alternative hosts to Xanthomonas campestris pv. musacearum in banana fields. Frontiers in Plant Science, 9, 1471. https://doi.org/10.3389/fpls.2018.01471
- Palaniraj, A., & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035
- Papagianni, M., Psomas, S. K., Batsilas, L., Paras, S. V., Kyriakidis, D. A., & Liakopoulou-Kyriakides, M. (2001). Xanthan production by Xanthomonas campestris in batch cultures. Process Biochemistry, 37(1), 73-80. https://doi.org/10.1016/S0032-9592(01)00174-1
- Pawlicka, A., Tavares, F. C., Dörr, D. S., Cholant, C. M., Ely, F., Santos, M. J. L., & Avellaneda, C. O. (2019). Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochimica Acta, 305, 232-239. https://doi.org/10.1016/j.electacta.2019.03.055
- Popović, T., Jošić, D., Starović, M., Milovanović, P., Dolovac, N., Poštić, D., & Stanković, S. (2013). Phenotypic and genotypic characterization of Xanthomonas campestris strains isolated from cabbage, kale and broccoli. Archives of Biological Sciences, 65(2), 585-593. https://doi.org/10.2298/ABS1302585P
- Prabhakar, A., Janaun, J., Woh, F. C., & Bono, A. (2004). Studies on xanthan production from Xanthomonas campetris using tapioca starch as carbon source. In Asian Pacific Confederation of Chemical Engineering congress program and abstracts Asian Pacific Confederation of Chemical Engineers congress program and abstracts. 375-375. The Society of Chemical Engineers, Japan. https://doi.org/10.11491/apcche.2004.0.375.0
- Rojas, M., Peña, M., & Peña-Vera, M. J. (2019). Characterization and determination of antimicrobial and metal resistant profiles of Xanthomonas strains isolated from natural environments. Journal of Analytical & Pharmaceutical Research, 8(2), 55-60. https://doi.org/10.15406/japlr.2019.08.00312
- Rottava, I., Batesini, G., Silva, M. F., Lerin, L., de Oliveira, D., Padilha, F. F., & Treichel, H. (2009). Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydrate Polymers, 77(1), 65-71. https://doi.org/10.1016/j.carbpol.2008.12.001
- Saddler, G. S., & Bradbury, J. F. (2005). Xanthomonadalesord. nov. 63-122. In Garrity, G., Brenner, D. J., Krieg, N. R., & Staley, J. R. (Editors). Bergey’s manual of systematic Bacteriology. Vol. 2. Springer, Boston, MA. 1106pp. https://doi.org/10.1007/0-387-28022-7_3
- Salah, R. B., Chaari, K., Besbes, S., Blecker, C., & Attia, H. (2011). Production of xanthan gum from Xanthomonas campestris NRRL B1459 by fermentation of date juice palm by products (Phoenix dactylifera L.). Journal of Food Process Engineering, 34(2), 457-474. https://doi.org/10.1111/j.1745-4530.2009.00369.x
- Soleymanpour, Z., Nikzad, M., Talebnia, F., & Niknezhad, V. (2018). Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech, 8(7), 1-12. https://doi.org/10.1007/s13205-018-1322-z
- Sworn, G. (2021). Chapter 27. Xanthan gum. 833-853. In Phillips, G. O., & Williams, P. A. (Editors). Handbook of hydrocolloids. 3rd edition, Woodhead Series in Food Science, Technology and Nutrition Publishing., 1190pp. https://doi.org/10.1016/B978-0-12-820104-6.00004-8
- Tilahun, B., Yinur, D., Zenabu, D., & Menesha, F. M. (2020) Isolation and identification of Enset wilt disease causing bacteria using 16S rRNA Gene Sequence samples collected from Gurage zone, Ethiopia. Journal of Life Science and Biomedicine, 10(4), 51-58. https://dx.doi.org/10.36380/scil.2020.jlsb7
- Yuen, G. Y., Alvarez, A. M., Benedict, A. A., & Trotter, K. J. (1987). Use of monoclonal antibodies to monitor the dissemination of Xanthomonas campestris pv. campestris. Phytopathology, 77(2), 366-370. https://doi.org/10.1094/Phyto-77-366
References
Abbaszadeh, A., Lad, M., Janin, M., Morris, G. A., MacNaughtan, W., Sworn, G., & Foster, T. J. (2015). A novel approach to the determination of the pyruvate and acetate distribution in xanthan. Food Hydrocolloids, 44, 162-171. https://doi.org/10.1016/j.foodhyd.2014.08.014
Al-Gboori, B., & Krepl, V. (2010). Importance of date palms as a source of nutrition. Agricultura Tropica et Subtropica, 43(4), 341-347.
Barua, R., Alam, M., Salim, M., and Ashrafee, T. S. (2016). Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris. Indian Journal of Experimental Biology 54(2):151-155
da Silva, L. C. C., Targino, B. N., Furtado, M. M., de Oliveira Pinto, M. A., Rodarte, M. P., & Hungaro, H. M. (2017). Chapter 13. Xanthan: Biotechnological production and applications. 385-422. In Holban, A. M., & Grumezescu, A. M. (Editors). Microbial Production of Food Ingredients and Additives. Academic Press. 518pp. https://doi.org/10.1016/B978-0-12-811520-6.00013-1
de Sousa Costa, L. A., Inomata Campos, M., Izabel Druzian, J., de Oliveira, A. M., & de Oliveira Junior, E. N. (2014). Biosynthesis of xanthan gum from fermenting shrimp shell: Yield and apparent viscosity. International Journal of Polymer Science, 2014. Article ID 273650 https://doi.org/10.1155/2014/273650
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Espert, M., Salvador, A., & Sanz, T. (2019). Rheological and microstructural behaviour of xanthan gum and xanthan gum-Tween 80 emulsions during in vitro digestion. Food Hydrocolloids, 95, 454-461. https://doi.org/10.1016/j.foodhyd.2019.05.004
Gondim, T. S., Pereira, R. G., & Fiaux, S. B. (2019). Xanthan gum production by Xanthomonas axonopodis pv. mangiferaeindicae from glycerin of biodiesel in different media and addition of glucose. Acta Scientiarum Biological Sciences, 41, e43661-e43661. https://doi.org/10.4025/actascibiolsci.v41i1.43661
Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. (2003). Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 39(2), 249-256. https://doi.org/10.1016/S0032-9592(03)00067-0
Khassaf, W. H., Niamah, A. K., & Al-Manhel, A. J. (2019). Study of the optimal conditions of levan production from a local isolate of Bacillus subtilis subsp. subtilis w36. Basrah Journal of Agricultural Sciences, 32(2), 213-222. https://doi.org/10.37077/25200860.2019.211
Khosravi-Darani, K., Reyhani, F. S., Nejad, B. N., & Farhadi, G. B. N. (2011). Bench scale production of xanthan from date extract by Xanthomonas campestris in submerged fermentation using central composite design. African Journal of Biotechnology, 10(62), 13520-13527. https://doi.org/10.5897/AJB11.018
Kyrova, E. I., Dzhalilov, F. S., & Ignatov, A. N. (2020). The role of epiphytic populations in pathogenesis of the genus Xanthomonas bacteria. BIO Web of Conferences, 23(1), 03010. https://doi.org/10.1051/bioconf/20202303010
Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K., & Wagner, M. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68, 5064–5081. https://doi.org/10.1128/AEM.68.10.5064-5081.2002
Makut, M. D., Agbonkhese, P. E., & Bello, A. (2018). Production of xanthan gum using Xanthomonas campestris isolated from some plants leaves in Keffi, Nigeria. Asian Journal of Biotechnology and Bioresource Technology, 3(4), 1-9. https://doi.org/10.9734/AJB2T/2018/42025
Miranda, A. L., Costa, S. S., Assis, D. D. J., de Jesus, C. S., Guimarães, A. G., & Druzian, J. I. (2020). Influence of strain and fermentation time on the production, composition, and properties of xanthan gum. Journal of Applied Polymer Science, 137(15), 48557. https://doi.org/10.1002/app.48557
Mudoi, P., Bharali, P., & Konwar, B. K. (2013). Study on the effect of pH, temperature and aeration on the cellular growth and xanthan production by Xanthomonas campestris using waste residual molasses. Journal of Bioprocessing and Biotechniques, 3(2), 135. https://doi.org/10.4172/2155-9821.1000135
Ndongo, S., Beye, M., Dubourg, G., Nguyen, T. T., Couderc, C., Fabrizio, D. P., & Angelakis, E. (2018). Genome analysis and description of Xanthomonas massiliensis sp. nov., a new species isolated from human faces. New Microbes and New Infections, 26, 63-72. https://doi.org/10.1016/j.nmni.2018.06.005
Nejadmansouri, M., Shad, E., Razmjooei, M., Safdarianghomsheh, R., Delvigne, F., & Khalesi, M. (2020). Production of xanthan gum using immobilized Xanthomonas campestris cells: Effects of support type. Biochemical Engineering Journal, 157, 107554. https://doi.org/10.1016/j.bej.2020.107554
Ocimati, W., Were, E., Groot, J. C., Tittonell, P., Nakato, G. V., & Blomme, G. (2018). Risks posed by intercrops and weeds as alternative hosts to Xanthomonas campestris pv. musacearum in banana fields. Frontiers in Plant Science, 9, 1471. https://doi.org/10.3389/fpls.2018.01471
Palaniraj, A., & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106(1), 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035
Papagianni, M., Psomas, S. K., Batsilas, L., Paras, S. V., Kyriakidis, D. A., & Liakopoulou-Kyriakides, M. (2001). Xanthan production by Xanthomonas campestris in batch cultures. Process Biochemistry, 37(1), 73-80. https://doi.org/10.1016/S0032-9592(01)00174-1
Pawlicka, A., Tavares, F. C., Dörr, D. S., Cholant, C. M., Ely, F., Santos, M. J. L., & Avellaneda, C. O. (2019). Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochimica Acta, 305, 232-239. https://doi.org/10.1016/j.electacta.2019.03.055
Popović, T., Jošić, D., Starović, M., Milovanović, P., Dolovac, N., Poštić, D., & Stanković, S. (2013). Phenotypic and genotypic characterization of Xanthomonas campestris strains isolated from cabbage, kale and broccoli. Archives of Biological Sciences, 65(2), 585-593. https://doi.org/10.2298/ABS1302585P
Prabhakar, A., Janaun, J., Woh, F. C., & Bono, A. (2004). Studies on xanthan production from Xanthomonas campetris using tapioca starch as carbon source. In Asian Pacific Confederation of Chemical Engineering congress program and abstracts Asian Pacific Confederation of Chemical Engineers congress program and abstracts. 375-375. The Society of Chemical Engineers, Japan. https://doi.org/10.11491/apcche.2004.0.375.0
Rojas, M., Peña, M., & Peña-Vera, M. J. (2019). Characterization and determination of antimicrobial and metal resistant profiles of Xanthomonas strains isolated from natural environments. Journal of Analytical & Pharmaceutical Research, 8(2), 55-60. https://doi.org/10.15406/japlr.2019.08.00312
Rottava, I., Batesini, G., Silva, M. F., Lerin, L., de Oliveira, D., Padilha, F. F., & Treichel, H. (2009). Xanthan gum production and rheological behavior using different strains of Xanthomonas sp. Carbohydrate Polymers, 77(1), 65-71. https://doi.org/10.1016/j.carbpol.2008.12.001
Saddler, G. S., & Bradbury, J. F. (2005). Xanthomonadalesord. nov. 63-122. In Garrity, G., Brenner, D. J., Krieg, N. R., & Staley, J. R. (Editors). Bergey’s manual of systematic Bacteriology. Vol. 2. Springer, Boston, MA. 1106pp. https://doi.org/10.1007/0-387-28022-7_3
Salah, R. B., Chaari, K., Besbes, S., Blecker, C., & Attia, H. (2011). Production of xanthan gum from Xanthomonas campestris NRRL B1459 by fermentation of date juice palm by products (Phoenix dactylifera L.). Journal of Food Process Engineering, 34(2), 457-474. https://doi.org/10.1111/j.1745-4530.2009.00369.x
Soleymanpour, Z., Nikzad, M., Talebnia, F., & Niknezhad, V. (2018). Xanthan gum production from acid hydrolyzed broomcorn stem as a sole carbon source by Xanthomonas campestris. 3 Biotech, 8(7), 1-12. https://doi.org/10.1007/s13205-018-1322-z
Sworn, G. (2021). Chapter 27. Xanthan gum. 833-853. In Phillips, G. O., & Williams, P. A. (Editors). Handbook of hydrocolloids. 3rd edition, Woodhead Series in Food Science, Technology and Nutrition Publishing., 1190pp. https://doi.org/10.1016/B978-0-12-820104-6.00004-8
Tilahun, B., Yinur, D., Zenabu, D., & Menesha, F. M. (2020) Isolation and identification of Enset wilt disease causing bacteria using 16S rRNA Gene Sequence samples collected from Gurage zone, Ethiopia. Journal of Life Science and Biomedicine, 10(4), 51-58. https://dx.doi.org/10.36380/scil.2020.jlsb7
Yuen, G. Y., Alvarez, A. M., Benedict, A. A., & Trotter, K. J. (1987). Use of monoclonal antibodies to monitor the dissemination of Xanthomonas campestris pv. campestris. Phytopathology, 77(2), 366-370. https://doi.org/10.1094/Phyto-77-366