Main Article Content

Abstract

This study was conducted in earthen ponds of shrimp hatchery belonging to the Basrah Agricultural Directorate, to find out the effect using of food additives omega-3 and Vitamin E on the performance of the growth and the quality of the produced larvae of the common carp Cyprinus carpio L.. Three treatments were used, the first treatment (T1) represented control without any food additives, the second treatment (T2) contained 5gm.Kg-1 diet of omega-3 fatty acids and the third treatment (T3) contained Vit. E was added at 200 mg.Kg-1 diet. The experiment lasted for 82 days. For each treatment three replicate were used and six common carp brood stock in each replicate. The productive parameters (body weight, weight gain, feed conversion rate, feed efficiency ratio% and specific and relative growth rate%) were measured. Results indicated an improvement in all production parameters and in the feed conversion efficiency of for T2 and T3, compared with the T1. The weight gain (526.39 gm.fish-1), feed conversion rate was 3.61 and feed efficiency ratio was  28.13% for the T2 which showed a significant differences (P<0.05) compared to the control, while T3 did not show significant differences (P>0.05 ) in comparison with both treatments T1 and T2; the specific and relative growth rate for T2 were 0.32%.day-1 and 30.81 %.day-1 respectively showed also a significant differences (P<0.05) compared with the control. These results showed that addition Vit. E to the diet improved the production parameters of common carp larvae better than in omega-3 and control treatments. The study concluded that addition omega-3 fatty acids at a concentration of 5gm Kg -1, and Vit. E at a concentration of 200 mg kg-1 to the diet enhanced the growth rates of common carp and improved larvae production.

Keywords

Cyprinus carpio common carp omega-3 fatty acids (EPA / DHA) Vitamin E

Article Details

How to Cite
Salih, O. A. ., Al-Dubakel, A. Y. ., & Gowdet, A. I. . (2020). Effect of Omega-3 Fatty Acids (EPA / DHA) and Vitamin E Addition on the Growth Performance and the Larvae Performance of Cyprinus carpio L. Basrah J. Agric. Sci., 33(1), 200–212. https://doi.org/10.37077/25200860.2020.33.1.15

References

  1. Al-Dubakel, A.Y.; Al-Lami, J.H. & Saber S.H. (2012).The use of Roquette oil (Eruca sativa) as food additive in the Common carp young’s diets (Cyprinus carpio L.) and its effects on its characterize. Basrah J. Agric.Sci., 25(2): 72-83. (In Arabic).
  2. https://www.iasj.net/iasj?func=fulltext&aId=69133
  3. Al-Souti, A.; Al-Sabahi, J.; Soussi, B. & Goddard, S. (2012). The effects of fish oil-enriched diets on growth, feed conversion and fatty acid content of red hybrid tilapia, Oreochromis sp. Food Chem., 133(3): 723-727. https://doi.org/10.1016/j.foodchem.2012.01.080
  4. Bezard, J.; Blond, J.; Bernard, A. & Clouet, P. (1994). The metabolism and availability of essential fatty acids in animal and human tissues. Reprod. Nutr. Dev., 34(6): 539-568. https://doi.org/10.1051/rnd:19940603.
  5. Bogut, I., Has, S.; Elizabeta., ?a?i?, M.; Milakovi?, Z.; Novoseli?, D. & Brki?, S. (2002). Linolenic acid supplementation in the diet of European catfish (Silurus glanis): effect on growth and fatty acid composition. J. Appl. Ichthyol., 18(1): 1-6. https://doi.org/10.1046/j.1439-0426.2002.00304.x
  6. Bou, M.;Berge, G. M.; Baeverfjord, G.; Sigholt, T.; Østbye, T.-K.;Romarheim, O.H.; Hatlen, B.; Leeuwis, R.; Venegas, C. & Ruyter, B. (2017). Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. Brit. J. Nutr., 117(1): 30-47. https://doi.org/10.1017/S0007114516004396
  7. Burdge, G.C., Jones, A.E. & Wootton, S.A. (2002). Eicosapentaenoic and docosapentaenoic acids are the principal products of ?-linolenic acid metabolism in young men. Brit. J. Nutr., 88(4): 355-363. https://www.iasj.net/iasj?func=fulltext&aId=69133 https://www.iasj.net/iasj?func=fulltext&aId=69133 https://doi.org/10.1079/BJN2002662
  8. Chaiyeapechara, S.; Casten, M.T.; Hardy, R.W. & Dong, F.M. (2003). Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture, 219, 715-738. https://doi.org/10.1016/S0044-8486(03)00025-5
  9. Copeman, L.; Parrish, C.; Brown, J. & Harel, M. (2002). Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): A live food enrichment experiment. Aquaculture, 210(1-4): 285-304. https://doi.org/10.1016/S0044-8486(01)00849-3
  10. FAO. (2018). Food and Agriculture Organization of the united nations . The state of the world Fisheries and Aquaculture FAO. Rome, Licence: CC BY-NC-SA 3.0 IGO: 210pp. https://creativecommons.org/licenses/by-nc-sa/3.0/igo
  11. Forster, I.; Higgs, D.A.; Bell, G.R.; Dosanjh, B. & March, B. (1988). Effect of diets containing herring oil oxidized to different degrees on growth and immunocompetence of juvenile coho salmon (Oncorhynchus kisutch). Can. J.Fish. Aquat. Sci., 45(12): 2187-2194 . https://doi.org/10.1139/f88-254
  12. Frischknecht, R., Wahli, T. & Meier, W. (1994). Commparsion of Pathological changes due to definciencyof vitamine C and vitamine E and combination of vitamine C and E in rainbow trout Oncorhynchus mykiss (Waboum). J. Fish Dis., 17(1): 3-45. https://doi.org/10.1111/j.1365-2761.1994.tb00343.x
  13. Jalali, M.A.; Hosseini, S.A. & Imanpour, M. R. (2008). Effect of vitamin E and highly unsaturated fatty acid-enriched Artemia urmiana on growth performance, survival and stress resistance of Beluga (Huso huso) larvae. Aquac. Res.., 39(12): 1286-1291. https://doi.org/10.1111/j.1365-2109.2008.01992.x
  14. Ji, H.; Cao, Y.; Liu, P.; Su, S.; Lin, Y.; Cao, F.; Hiromi, O.; Zhou, J. &Ye, Y. (2009). Effect of dietary HUFA on the lipid metabolism in grass carp Ctenopharymgodon idella. Acta Hydrobiol. Sin., 33(5): 881-889. https://doi.org/10.3724/SP.J.1035.2009.50881
  15. Jin, M.; Yuan, Y.; Lu,Y.; Ma, H.; Sun, P.; Li, Y.; Qiu, H.; Ding, L. & Zhou, Q. (2017). Regulation of growth, tissue fatty acid composition, biochemical parameters and lipid related genes expression by different dietary lipid sources in juvenile black seabream, Acanthopagrus schlegelii. Aquaculture, 479: 25-37. https://doi.org/10.1016/j.aquaculture.2017.05.017
  16. Hamre, K. & Lie, O. (1995). Minimum requirement of vitamin E for Atlantic salmon (Salmo salar L.) at first feeding. Aquac. Res., 26: 175-184. https://doi.org/10.1111/j.13652109.1995.tb00900.x
  17. Lee, S.M.; Jeon, I.G. & Lee, J.Y. (2002). Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 211(1/4): 227-239.http://doi.org/10.1016/s0044-486(01)00880-8
  18. Li, P.; Wang, X. & Gatlin, D.M. (2008). RRR-?-Tocopheryl succinate is a less bioavailable source of vitamin E than all-rac-?-tocopheryl acetate for red drum, Sciaenops ocellatus. Aquaculture, 280(1-4): 165-169. https://doi.org/10.1016/j.aquaculture.2008.04.027
  19. New, M.B. (1987). Feed and feeding of fish and shrimp: A manual on the preparation and presentation of compound feeds for shrimp and fish in aquaculture UNEP/ FAO/ ADCP/ REP/87/26 Rome/Italy www.fao.org/docrep/s4314e/s4314e00.htm#Contents
  20. Madsen, L.; Rustan, A.C.; Vaagenes, H.; Berge, K.; Dyrøy, E. & Berge, R.K. (1999). Eicosapentaenoic and docosahexaenoic acid affect mitochondrial and peroxisomal fatty acid oxidation in relation to substrate preference. Lipids, 34(9): 951-963. https://doi.org/10.1007/s11745-999-0445-x
  21. Morson, L.A. & Clandinin, M.T. (1986). Diets varying in linoleic and linolenic acid content alter liver plasma membrane lipid composition and glucagon-stimulated adenylate cyclase activity. J.Nutr., 116(12): 2355-2362. https://doi.org/10.1093/jn/116.12.2355
  22. Mourente, G.; Díaz-Salvago, E.; Tocher, D.R. & Bell, J.G. (2000). Effects of dietary polyunsaturated fatty acid/vitamin E (PUFA/tocopherol ratio on antioxidant defence mechanisms of juvenile gilthead sea bream (Sparus aurata L., Osteichthyes, Sparidae) Fish Physiol. Biochem., 23(4): 337-351. https://doi.org/10.1023/A:1011128510062
  23. Myszkowski, L. (1997). Pitfalls of using growth rate coefficients. Polskie Archiwum Hydrobiologii, 3(44): 389-396. (Cited by Kwiatkowski, M.; ?arski, D.; Kucharczyk, D.; Kupren, K., Jamróz, M.; Targo?ska, K.; Krejszeff, S.; Haku?-B?a?owska, A.; Kujawa, R. & Mamcarz, A. (2008). Influence of feeding natural and formulated diets on chosen rheophilic cyprinid larvae. Arch. Polish Fish., 16(4): 383-396.
  24. https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.2478%2Fs10086-008-0026-0
  25. Pan, J.-H; Feng, L.; Jiang, W.-D.; Wu, P.; Kuang, S.-Y.; Tang, L.; Zhang, Y.-A.; Zhou, X.-Q. & Liu, Y. (2017). Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-?B, TOR and Nrf2 signaling. Fish Shellfish Immun., 60: 219-236. https://doi.org/10.1016/j.fsi.2016.11.044
  26. Puangkaew, J.; Kiron, V.; Satoh, S. & Watanabe, T. (2005). Antioxidant defense of rainbow trout (Oncorhynchus mykiss) in relation to dietary n-3 highly unsaturated fatty acids and vitamin E contents. Comp. Bioch. Phys. C, 140(2): 187-196. https://doi.org/10.1016/j.cca.2005.01.016
  27. Ramezani, F.; Kamarudin, M.S.; Harmin, S.A. & Saad, C.R. (2012). Dietary saturated and omega?3 fatty acids affect growth and fatty acid profiles of Malaysian Mahseer. Eur. J. Lipid Sci. Techn., 114(2): 185-193. https://doi.org/10.1002/ejlt.201100254
  28. Ruff, N.; Fitzgerald, R.D.; Cross, T.F.; Hamre, K. & Kerry, J.P. (2003). The effect of dietary vitamin E and C level on market-size turbot (Scophthalmus maximus) fillet quality. Aquac. Nutr., 9(2): 91-103. https://doi.org/10.1046/j.1365-2095.2003.00230.x
  29. Sargent, J.; McEvoy, L. & Bell, J. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155(1-4): 117-127.https://doi.org/10.1016/S0044-8486(97)00122-1
  30. Sen, C.K.; Khanna, S. & Roy, S. (2006). Tocotrienols: vitamin E beyond tocopherols. Life Sci., 78(18): 2088-2098. https://doi.org/10.1016/j.lfs.2005.12.001
  31. Sharifzadeh, S.; Khara, H. & Ghobadi, S. (2015). Effects of vitamin E and riboflavin (B 2) and their combination on growth and survival of common carp,Cyprinus carpio fingerlings. J. Fish. Aquat. Sci., 10(1): 63-68. http://dx.doi.org/10.3923/jfas.2015.63.68
  32. Simopoulos, A.P. (2016). An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8(3): 128. https://doi.org/10.3390/nu8030128
  33. Stillwell, W. & Wassall, S.R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids, 126(1): 1-27. https://doi.org/10.1016/S0009-3084(03)00101-4
  34. Takeuchi, T.; Arai, S.; Watanabe, T. & Shimma, Y. (1980). Requirement of eel Anguilla japonica for essential fatty acids. Bull. Jap. Soc. Sci. Fish., 46(3): 345-353. https://doi.org/10.2331/suisan.46.345
  35. Ta?bozan, O. & Gokce, M.A. (2017). Fatty Acids in Fish.143-159. In Catala, A. (Ed.). Fatty Acids. 1st ed. In Tech: Croatia, 248pp.https://www.intechopen.com/books/fatty-acids/fatty-acids-in-fish
  36. Tidwell, J.H. & Robinette, H.R. (1990). Changes in proximate and fatty acid composition of fillets from channel catfish during a two year growth period. Trans. Am. Fish. Soc., 119(1): 31-40. https://doi.org/10.1577/1548-8659(1990)119%3C0031:CIPAFA%3E2.3.CO;2
  37. Xu, Y.; Li, W. & Ding, Z. (2017). Polyunsaturated fatty acid supplements could considerably promote the breeding performance of carp. Eur. J. Lipid Sci. Tech., 119(5): 1600183. https://doi.org/10.1002/ejlt.201600183
  38. Yu, J.; Li, S.; Niu, H.; Chang, J.; Hu, Z. & Han, Y.(2019). Influence of dietary linseed oil as substitution of fish oil on whole fish fatty acid composition, lipid metabolism and oxidative status of juvenile Manchurian trout, Brachymystax lenok. Sci. Rep., 9(1): 1-10. https://doi.org/10.1038/s41598-019-50243-8
  39. Zhang, X.; Ning, X.; He, X; Sun, X.; Yu, X.; Cheng, Y.; Yu, R. & Wu, Y. (2020). Fatty acid composition analyses of commercially important fish species from the Pearl River Estuary, China. PLOS ONE, 15(1): e0228276. https://doi.org/10.1371/journal.pone.0228276