Effect of Natural and Synthetic Sources of Lycopene on Productive Performance, Carcass Quality and viscera relative weights of Japanese Quail Coturnx japonica Temminck & Schlegel, 1849

Authors

  • Issa A.T. Al-Jrrah Ministry of Agriculture, Directorate of Basrah Agriculture, Iraq
  • Rabia J. Abbas Department of Animal Production, College of Agriculture, University of Basrah, Iraq

DOI:

https://doi.org/10.37077/25200860.2020.33.2.05

Keywords:

Tomato, Red bell pepper, lycopene, Performance, Carcass quality, Quail

Abstract

This study aimed to investigate the effect of natural and synthetic sources of lycopene on performance, carcass quality and organ morphology of Japanese quail. A total of 420 one-day-old quail chicks were randomly distributed among seven treatments. First treatments were fed a basal diet as a control. Second and third treatments were fed diet supplemented with tomato fruit (Lycopersicon esculentum) powder (TOM) (17 and 34 g.kg-1 equal to 50 and 100 mg.kg-1 lycopene), fourth and fifth treatments were fed diet supplemented with red bell pepper (Capsicum annum L.) fruit powder (RBP) (16.23, 32.46 g.kg-1 equal to 50 and 100 mg.kg-1 lycopene), sixth and seventh treatments were fed diet supplemented with 50 and 100 mg.kg-1 pure lycopene powder (LY), respectively. Results indicated that final body weight and weight gain were improved significantly in comparison to control and T3. Feed efficiency was improved compared to control, T3 and T7. Production and economic efficiency index significantly better than control. A significant elevation (P≤0.05) in relative weight of thigh, small intestine, duodenum, cecum weight and length for T3 treatment, T7 in jejunum and ileum weight, T4 in carcass weight and gizzard, T5 in the liver compared to control. The relative weight of abdominal fat, spleen, bursa and bursa index were decreased (P≤0.05) in supplemented treatments in comparison to control.  In conclusion, natural sources of LY (50 mg.kg-1) either TOM (17 g.kg-1) or RBP (16.23 g.kg-1), could be used to improve performance, production and economical efficiency index, carcass traits and some gut measurements of quails.

Downloads

Download data is not yet available.

References

Abdullah, M.A., Al-Dajah, S., Abu Murad, A., El-Salem, A. M., & Khafajah, A. M. (2019). Extraction, purification, and characterization of lycopene from Jordanian vine tomato cultivar, and study of its potential natural antioxidant effect on Samen Baladi. Current Research in Nutrition and Food Science, 7, 532-546. http://dx.doi.org/10.12944/CRNFSJ.7.2.22

Al-Fayadh, H. A. A., & Naji, S. A. H. (1989). Poultry Products Technology. Ministry of Higher Education Press. University of Baghdad: 626pp. (In Arabic).

Al-Fayadh, H. A. A., Naji, S. A. H., & Al-Hajo, N. N. (2011). Poultry Meat Technology. 2nd part. Higher Education Press, University of Baghdad, 292pp. (In Arabic).

Ali, N. A. L., & Al Massad, M. (2015). Effect of adding Lycopene to the ration on productive traits of broiler ROSS 308. International Journal of Current Research, 7. 23011-23014. http://www.journalcra.com.

Al-Janaby, Y. A. M. (2015). Effect of dietary supplementation with different levels of lycopene on productive, physiological and reproductive performance of local geese. Ph. D. Thesis. Fac. Agric., Univ. Baghdad, 178pp. (In Arabic).

Al-Shammary, K. E. A. S. (2017). Efficiency of dietary zinc and lycopene to counteract oxidative stress of Japanese quail. Iraqi Poultry Sciences Journal, 11, 44-58. https://iasj.net/iasj?func=fulltext&aId=157214

A.O.A.C. (2016). Official Methods of Analysis of AOAC International. George W., & Latimer, Jr. (Eds.), (20th ed.). Rockville, Maryland 20850-3250, 3172pp.

Arain, M. A., Mei, Z., Hassan, F. U., Saeed, M. Alagawany, M., Shar, A. H., & Rajput, I. R. (2018). Lycopene: a natural antioxidant for prevention of heat-induced oxidative stress in poultry. World's Poultry Science Journal, 74, 1-12.https://doi.org/10.1017/S0043933917001040

Asadollahi, S., Karimi, N., & Mansuri, A. (2014). Using of dried tomato pomace in broiler's diet and its effect on chemical components of obtained meat. In Int. Conf. Chem., Agric., Biol. Sci. In International Conference on Chemical, Agricultural, and Biological Sciences ICCABS'2014) Oct. 9-10, 2014, Antalya (Turkey).

Aziz, H. H., Kadim, M. M. & Desher, M. A. (2019). Effect of organic compost on chemical parameters for two varieties of tomato plant (Solanum esculentium L.). Basrah Journal of Agricultural Sciences, 32(Spec. Issue 2), 262-271. https://doi.org/10.37077/25200860.2019.274

Dougnon, T. J., Kiki, P., Dougnon, T. V., & Youssao I. (2014). Evaluation of Capsicum frutescens powder effects on the growth performances, biochemical and hematological parameters in Hubbard broiler. Journal of Applied Pharmaceutical Science, 4, 038-043. https://doi.org/10.7324/JAPS.2014.40107

El-Taz, S. M. A. (2014). Response of broiler chicken to diets containing different mixture powder levels of red pepper and black pepper as natural feed additive. Animal and Veterinary Sciences, 2, 81-86.‏ https://doi.org/10.11648/j.avs.20140203.15

Estruch, R., Ros, E., Salas-Salvadó, J., Covas, M. -I., Corella, D., Arós, F., & MartínezGonzález, M. A. (2013). Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 368, 1279-1290.https://doi.org/ 10.1056/NEJMoa1200303.

Flint, J. F., & Garner, M. R. (2009). Feeding beneficial bacteria: A natural solution for increasing efficiency and decreasing pathogens in animal agriculture. Journal of Applied Poultry Research, 18, 367-378. https://doi.org/10.3382/japr.2008-00133.

Jang, I. S., & Moon, Y. S. (2015). Effects of lycopene on the expression of lipid metabolism, glucose transport and pro-inflammatory related genes in chickens. Korean Journal of Poultry Science, 42, 231-238.‏ https://doi.org/10.5536/KJPS.2015.42.3.231

Khan, R. U., Zia-Ur-Rahman, Javed, I., & Muhammad, F. (2014). Serum antioxidants and trace minerals as influenced by vitamins, probiotics and proteins in broiler breeders. Journal of Applied Animal Research, 42, 249-255. https://doi.org/10.1080/09712119.2013.822815

Lee, K. W., Choo, W. D., Kang, C. W., & An, B. K. (2016). Effect of lycopene on the copper-induced oxidation of low-density lipoprotein in broiler chickens. Springer Plus, 5, 389.‏ https://doi.org/10.1186/s40064-016-2035-6

Leke, J. R., Mandey, J.S., Ratulangi, F., & Najoan, M. (2018). Effect of tomato (Solanum lycopersicum L.) protein on carcass and meat quality of Kampong chicken. Journal of Indonesian Tropical Animal Agriculture, 43, 35-42. https://doi.org/10.14710/jitaa.43.1.35-42.‏

Lodhi, G. N., Singh, D., & Ichhponani, J. S. (1976). Variation in nutrient content of feeding stuffs rich in protein and reassessment of the chemical method for metabolizable energy estimation for poultry. The Journal of Agricultural Science, 86, 293-303. https://doi.org/10.1017/S0021859600054757‏

Lucio, B., & Hitchner, S. B. (1979). Infection bursal disease emulsified vaccine: Effect upon neutralizing-antibody levels in the dam and subsequent protection of the progeny. Avian Diseases, 23, 466-478. https://doi.org/10.2307/1589577

Marković, K., Mirjana, H., & Nada, V. (2006). Lycopene content of tomato products and their contribution to the lycopene intake of Croatians. Nutrition Research, 26(11): 556-560. https://doi.org/10.1016/j.nutres.2006.09.010

Marzoni, M., Chiarini, R., Castilo, A., Romboli, I., De Marco, M., & Schiavone, A. (2014). Effects of dietary natural antioxidant supplementation on broiler chicken and Muscovy duck meat quality. Animal Science Paper and Reports, 32, 359-368.

Mendelova, A., Fikselova, M., & Mendell, L. M. (2013). Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 61, 1329-1337. https://doi.org/10.11118/actaun201361051329

Mercy, E.R., & David, U. (2018). Potential health benefits of conventional nutrients and phytochemicals of Capsicum peppers. Pharmacy & Pharmacology International Journal, 6, 62-69.https://doi.org/ 10.15406/ppij.2018.06.00157

Mezbani, A., Kavan, B. P., Kiani, A., & Masouri B. (2019). Effect of dietary lycopene supplementation on growth performance, blood parameters and antioxidant enzymes status in broiler chickens. Livestock Research for Rural Development, 31(1). http://www.lrrd.org/lrrd31/1/bahma31012.html

Mozaffarian, D. (2016). Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. Circulation, 133, 187-225. https://doi.org/10.1161/ CIRCULATIONAHA.115.018585

Naji, S. A. H. (2006). Commercial Broiler Production Manual. Iraqi Poultry Science Association (IPSA). Brochure No. 12, 106pp. (In Arabic).

Nikolakakis, I., Banakis, D., Florou-Paneri, P., Dotas, V., Giannenas, I., & Botsoglou, N. (2004). Effect of dried tomato pulp on performance and carcass characteristics of growing quails. Archiv fur Geflugelkunde, 68, 34-38.

NRC, National Research Council. (1994). Nutrient Requirements of Poultry. 9th ed. National Academy of Science. Washington, D.C.: 176pp. http://www.nap.edu/catalog/2114.html

North, O. M. (1984). Commercial Chicken Production Annual .3rd edn. AV1 Publ. Company Inc. West port, Connecticut: 710pp.

Ognik, K., Cholewinska E., Sembratowicz I.; Grela, E., & Czech A. (2016). The potential of using plant antioxidants to stimulate antioxidant mechanisms in poultry. World's Poultry Science Journal, 72, 291-298.https://doi.org/10.1017/S0043933915002779

Omri, B., Alloui, N., Durazzo, A., Lucarini, M., Aiello, A., Romano, R.; Santini, A., & Abdouli, H. (2019). Egg yolk antioxidants profiles: Effect of diet supplementation with linseeds and tomato-red pepper mixture before and after Storage. Foods, 8, 320. https://doi.org/10.3390/foods8080320

Palozza, P., Catalano, A., Simone, R. E., Mele, M. C., & Cittadini A. (2012). Effect of lycopene and tomato products on cholesterol metabolism. Annals of Nutrition and Metabolism, 61, 126-134. https://doi.org/10.1159/000342077

Rahmatnejad, E., Pour, M. B., Mamuel, M., Mirzadeh, K., & Perai, A. H. (2011). The effects of dried tomato pomace and a multiple enzyme mixture supplementation (Rovabio Excel TM) on performance and carcass quality of broiler chickens. African Journal of Biotechnology, 10, 9207-9212.‏ https://doi.org/10.5897/AJB10.2325

Rao, A. V., & Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19, 305-323.‏ https://doi.org/10.1016/S0271-5317(98)00193-6

Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207-216. https://doi.org/10.1016/j.phrs.2007.01.012

Sahin, K., Onderci, M., Sahin, N., Gursu, M. F., Khachik, F., & Kucuk, O. (2006). Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. Journal of Thermal Biology, 31, 307-312.‏ https://doi.org/ 10.1016/j.jtherbio.2005.12.006.

Sahin, N., Orhan, C., Tuzcu, M., Sahin, K., & Kucuk, O. (2008). The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poultry Science, 87, 276-283. https://doi.org/10.3382/ps.2007-00207

Sahin, K., Orhan, C., Tuzcu, M., Sahin, N., Hayirli, A., Bilgili, S., & Kucuk, O. (2016). Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Poultry Science, 95, 1088-1095. http://dx.doi.org/10.3382/ps/pew012

Selim, N. A., Youssef, S. F., Abdel-Salam, A. F., & Nada, S. A. (2013). Evaluation of some natural antioxidant sources in broiler diets: 1-Effect on growth, physiological, microbiological and immunological performance of broiler chicks. International Journal of Poultry Science, 12, 561-571. https://doi.org/ 10.3923/ijps.2013.561.571

Ševčíková, S.; Skřivan, M. & Dlouhá, G. (2008). The effect of lycopene supplementation on lipid profile and meat quality of broiler chickens. Czech Journal of Animal Science, 53, 431-440.‏ https://doi.org/10.17221/350-CJAS.

Shehata, S.F., Kamel, E.R., Abo-Salem, M.E.S. & Atallah, S.T. (2018). Effect of some dietary supplementation on economic efficiency of growing Japanese Quails. Benha Veterinary Medical Journal (BVMJ), 34, 219-231.‏ http://www.bvmj.bu.edu.eg

SPSS. (2012). SPSS User’s Guide Statistics. Version 19. Copyright IBM, SPSS Inc.

Sun, B., Chen, C., Wang, W., Ma, J., Xie, Q., Gao, Y., Chen, F., Zhang, X., & Bi, Y. (2015). Effects of lycopene supplementation in both maternal and offspring diets on growth performance, antioxidant capacity and biochemical parameters in chicks. Journal of Animal Physiology and Animal Nutrition, 99, 42-49. https://doi.org/10.1111/jpn.12196

Surendar, J., Shere, D. M., & Shere, P. D. (2018). Effect of drying on quality characteristics of dried tomato powder. Journal of Pharmacognosy and Phytochemistry, 7, 2690-2694. https://www.phytojournal.com

Tawfeek S.S., Hassanink, K.M.A., & Youssef I.M.I. (2014). The effect of dietary supplementation of some antioxidants on performance, oxidative stress and blood parameters in broilers under natural summer conditions. Journal World's Poultry Research, 4, 10-19.

Tundis, R., Loizzo, M.R., Menichini, F., Bonesi, M., Confortif, F., Statti, G., De Luca, D., De Cindio, B., & Menichini, F. (2011). Comparative study on the chemical composition, antioxidant properties and hypoglycaemic activities of two Capsicum annuum L. cultivars (Acuminatum small and Cerasiferum). Plant Foods for Human Nutrition, 66: 261-269. https://doi.org/10.1007/s11130-011-0248-y

Vitale, A. A., Bernatene, E. A., & Pomilio, A.B. (2010). Carotenoids in chemoprevention: Lycopene. Acta bioquímica clínica latinoamericana, 44, 195-238. (Abs.)

Wallace, R. J., Oleszek, W., Franz, C., Hahn, I., Baser, K. H. C., Mathe, A., & Teichmann, K. (2010). Dietary plant bioactives for poultry health and productivity. British Poultry Science, 51, 461-487. https://doi.org/10.1080/00071668.2010.506908

Wang, X. D. (2012). Lycopene metabolism and its biological significance. The American journal of Clinical Nutrition, 96, 1214S-1222S. https://doi.org/10.3945/ajcn.111.032359‏

Yahia E. M. (2009). The contribution of fruit and vegetable consumption to human health. 3-51 In de la Rosa, L.A.; Alvarez‐Parrilla, E. & Gustavo A. González‐Aguilar, G.A. (Eds.). Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability. Oxford, Wiley-Blackwell. 367pp. DOI:10. 1002/9781119158042

Zhang, G. F., Yang, Z. B., Wang, Y., Yang, W. R., Jiang, S. Z., & Gai, G. S. (2009). Effects of ginger root (Zingiber officinale) processed to different particle sizes on growth performance, antioxidant status, and serum metabolites of broiler chickens. Poultry science, 88, 2159-2166. https://doi.org/10.3382/ps.2009-00165.

Zhao, X., Yang, Z. B., Yang, W. R. Wang, Y., Jiang, S. Z., & Zhang, G. G. (2011). Effects of ginger root (Zingiber officinale) on laying performance and antioxidant status of laying hens and on dietary oxidation stability. Poultry Science, 90, 1720-1727.‏ https://doi.org/10.3382/ps.2010-01280.

Published

2020-09-26

How to Cite

Al-Jrrah, I. A., & Abbas, R. J. (2020). Effect of Natural and Synthetic Sources of Lycopene on Productive Performance, Carcass Quality and viscera relative weights of Japanese Quail Coturnx japonica Temminck & Schlegel, 1849. Basrah J. Agric. Sci., 33(2), 52-66. https://doi.org/10.37077/25200860.2020.33.2.05

Issue

Section

Articles