Main Article Content

Abstract

This paper presents a review on algorithm development and crop water modelling with a focus on optimizing significant parameters related to crop factors, soil factors, and weather factors. The accurate representation and optimization of these parameters are crucial for reliable predictions and effective decision-making in agricultural practices. The objective of this review is to analyse the existing literature on algorithm development, parameter optimization techniques, and their application in crop water modelling, specifically emphasizing the importance of crop factors, soil factors, and weather factors. The review concludes with a discussion on the key findings and future directions in algorithm development and optimization for crop water modelling. It highlights potential research gaps and challenges that need to be addressed to improve the accuracy and efficiency of crop water modelling. The impact of optimized modelling approaches on sustainable agricultural practices and water management is also discussed. Overall, this comprehensive review provides valuable insights into the importance of algorithm development, optimization, and parameter selection in crop water modelling, specifically focusing on crop factors, soil factors, and weather factors.

Keywords

Algorithm development Crop factor Crop water modelling Environment factor Parameter optimization Soil factor

Article Details

How to Cite
Sulaiman, A. S. S. ., Wayayok, A. ., Aziz, S. A. ., Yun, W. M. ., & Leifeng, G. . (2024). Advancements in Crop Water Modelling: Algorithmic Developments and Parameter Optimization Strategies for Sustainable Agriculture: A Review. Basrah Journal of Agricultural Sciences, 37(2), 310–325. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/2007

References

  1. Abdel-Magid, Y. L., & Mazumder, S. K. (2013). Optimizing crop water allocation using particle swarm optimization. Journal of Irrigation and Drainage Engineering, 139(4), 281-293. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000426.
  2. Al-Amin, R., Hossain, M. B., & Yunus, A. (2022). Estimation of crop water requirement and irrigation scheduling of rice in southeastern region of Bangladesh using FAO-CROPWAT 8.0. Pp. 437-449. In Arthur, S., Saitoh, M., & Pal, S.K. (Editors). Advances in Advances in Civil Engineering. Lecture Notes in Civil Engineering, vol 184. https://doi.org/10.1007/978-981-16-5547-0_40.
  3. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper 56). FAO, Water Resources, Development and Management Service.
  4. Ashrostaghi, T., Aliniaeifard, S., Shomali, A., Azizinia, S., Abbasi Koohpalekani, J., Moosavi-Nezhad, M., & Gruda, N. S. (2022). Light intensity: The role player in cucumber response to cold stress. Agronomy, 12(1), 201. https://doi.org/10.3390/agronomy12010201
  5. Bernal-Vicente, A., Cantabella, D., Petri, C., Hernández, J. A., & Diaz-Vivancos, P. (2018). The salt-stress response of the transgenic plum line J8-1 and its interaction with the salicylic acid biosynthetic pathway from mandelonitrile. International Journal of Molecular Sciences, 19(11), 3519. https://doi.org/10.3390/ijms19113519.
  6. Bitew, Y., & Workie, M. (2017). Impact of crop production inputs on soil health: A review. Asian Journal of Plant Sciences, 16(3), 109–131. https://doi.org/10.3923/ajps.2017.109.131
  7. Bouman, B., & Tuong, T. P. (2001). Field water management to save water and increase productivity in irrigated lowland rice. Agricultural Water Management, 49(1), 11-30. https://doi.org/10.1016/S0378-3774(00)00128-1
  8. De la Rosa, J. M., Conesa, M. R., Domingo, R., Aguayo, E., Falagán, N., & Pérez-Pastor, A. (2016). Combined effects of deficit irrigation and crop level on early nectarine trees. Agricultural Water Management, 170, 120-132. https://doi.org/10.1016/j.agwat.2016.01.012
  9. Esmaili, M., Aliniaeifard, S., Mashal, M., Asefpour Vakilian, K., Ghorbanzadeh, P., Azadegan, B., Seif, M., & Didaran, F. (2021). Assessment of adaptive neuro-fuzzy inference system (ANFIS) to predict production and water productivity of lettuce in response to different light intensities and CO2 concentrations. Agricultural Water Management, 258, 107201. https://doi.org/10.1016/j.agwat.2021.107201
  10. Ferrarezi, R. S., Lin, X., Gonzalez Neira, A. C., Tabay Zambon, F., Hu, H., Wang, X., Huang, J. H., & Fan, G. (2022). Substrate pH influences the nutrient absorption and rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Frontiers in Plant Science, 13, 856937. https://doi.org/10.3389/fpls.2022.856937
  11. Girsang, C. (2023). The role of information technology in improving resource management efficiency in sustainable agriculture. Jurnal Minfo Polgan, 12(2), 1698-1712. https://doi.org/10.33395/jmp.v12i2.12959
  12. Ul Haq, Z., & Anwar, A. A. (2010). Irrigation scheduling with genetic algorithms. Journal of Irrigation and Drainage Engineering, 136(10). https://doi.org/10.1061/(ASCE)IR.1943-4774.0000238
  13. Hatfield, J. L. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4-10. https://doi.org/10.1016/j.wace.2015.08.001
  14. Hsiao, T. C., Heng, L. K., Steduto, P., Rojas-Lara, B., & Fereres, E. (2009). AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448-459. https://doi.org/10.2134/agronj2008.0218s
  15. Huang, F., Mo, X., Hu, S., & Li, L. (2020). Agricultural water optimization coupling with a distributed ecohydrological model in a mountain-plain basin. Journal of Hydrology, 590, 125336. https://doi.org/10.1016/j.jhydrol.2020.125336
  16. Huang, J., Subasinghe, R., Malik, R. S., & Triantafilis, J. (2015). Salinity hazard and risk mapping of point source salinisation using proximally sensed electromagnetic instruments. Computers and Electronics in Agriculture, 113, 213-224. https://doi.org/10.1016/j.compag.2015.02.013
  17. Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using AI. Artificial Intelligence in Agriculture, 2, 1-12. https://doi.org/10.1016/j.aiia.2019.05.004
  18. Kanda, E. K., Senzanje, A., & Mabhaudhi, T. (2021). Calibration and validation of the AquaCrop model for full and deficit irrigated cowpea (Vigna unguiculata (L.) Walp). Physics and Chemistry of the Earth, Parts A/B/C, 124(1), 102941. https://doi.org/10.1016/j.pce.2020.102941
  19. Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. https://doi.org/10.1016/j.envint.2019.105078
  20. Lai, J., Liu, T., & Luo, Y. (2022). Evapotranspiration partitioning for winter wheat with shallow groundwater in the lower reach of the Yellow River Basin. Agricultural Water Management, 266, 107561. https://doi.org/10.1016/j.agwat.2022.107561
  21. Li, Y., Ye, W., Wang, M., & Yan, X. (2009). Climate change and drought: A risk assessment of crop-yield impacts. Climate Research, 39(1), 31-46. https://doi.org/10.3354/cr00797
  22. Li, M., Du, Y., Zhang, F., Fan, J., Ning, Y., Cheng, H., & Xiao, C. (2020). Modification of CSM-CROPGRO-Cotton model for simulating cotton growth and yield under various deficit irrigation strategies. Computers and Electronics in Agriculture, 179, 105843. https://doi.org/10.1016/j.compag.2020.105843
  23. Liu, Y. J., Zhang, W., Wang, Z. B., Ma, L., Guo, Y. P., Ren, X. L., & Mei, L. X. (2019). Influence of shading on photosynthesis and antioxidative activities of enzymes in apple trees. Photosynthetica, 57(3), 857-865. https://doi.org/10.32615/ps.2019.081
  24. Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686-1697. https://doi.org/10.1104/pp.112.208298
  25. Mazzoncini, M., Sapkota, T., Bàrberi, P., Antichi, D., & Risaliti, R. (2011). Long-term effect of tillage, nitrogen fertilization, and cover crops on soil organic carbon and total nitrogen content. Soil & Tillage Research, 114, 165–174. https://doi.org/10.1016/j.still.2011.05.001
  26. McCready, M. S., & Dukes, M. (2011). Landscape irrigation scheduling efficiency and adequacy by various control technologies. Agricultural Water Management, 98(5), 697-704. https://doi.org/10.1016/j.agwat.2010.11.007
  27. Mohan Kumar, B., & Kunhamu, T. K. (2022). Nature-based solutions in agriculture: A review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, “the Land of Coconut Trees.” Nature-Based Solutions, 2, 100012. https://doi.org/10.1016/j.nbsj.2022.100012
  28. Moore, C. E., Meacham-Hensold, K., Lemonnier, P., Slattery, R. A., Benjamin, C., Bernacchi, C. J., Lawson, T., & Cavanagh, A. P. (2021). The affect of increasing temperature on crop photosynthesis: From enzymes to ecosystems. Journal of Experimental Botany, 72(8), 2822–2844. https://doi.org/10.1093/jxb/erab090
  29. Nguyen, D. C. H., Ascough, J. C., Maier, H. R., Dandy, G. C., & Andales, A. A. (2017). Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental Modelling & Software, 97, 32-45. https://doi.org/10.1016/j.envsoft.2017.07.002
  30. Nikolaou, G., Neocleous, D., Christou, A., Kitta, E., & Katsoulas, N. (2020). Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy, 10(8), 1120. https://doi.org/10.3390/agronomy10081120
  31. Nti, I. K., Zaman, A., Nyarko-Boateng, O., Adekoya, A. F., & Keyeremeh, F. (2023). A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decision Analytics Journal, 8, 100311. https://doi.org/10.1016/j.dajour.2023.100311
  32. O’Geen, A. T. (2013). Soil water dynamics. Nature Education Knowledge, 4(5), 9. Retrieved from https://www.nature.com/scitable/knowledge/library/soil-water-dynamics-103089121/
  33. Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J. (2013). Soil physical and chemical properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, 19, 129-139. https://doi.org/10.1111/ajgw.12016
  34. Peng, Y., Xiao, Y., Fu, Z., Dong, Y., Zheng, Y., Yan, H., & Li, X. (2019). Precision irrigation perspectives on the sustainable water-saving of field crop production in China: Water demand prediction and irrigation scheme.
  35. Pinheiro, E. A. R., de Jong van Lier, Q., & Šimůnek, J. (2019). The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios. Agricultural Systems, 173, 364-377. https://doi.org/10.1016/j.agsy.2019.03.019
  36. Qi, X., Feng, K., Sun, L., Zhao, D., Huang, X., Zhang, D., Liu, Z., & Baiocchi, G. (2022). Rising agricultural water scarcity in China is driven by expansion of irrigated cropland in water-scarce regions. One Earth, 5(10), 1139-1152. https://doi.org/10.1016/j.oneear.2022.09.008
  37. Ramanathan, K. C., Saravanan, S., Krishna, K. M., Srinivas, T., & Selokar, A. (2019). Reference evapotranspiration assessment techniques for estimating crop water requirement. International Journal of Engineering and Technology, 8(4), 1094-1100. https://doi.org/10.35940/ijrte.D6738.118419
  38. Rastogi, M., Kolur, S. M., Burud, A., Sadineni, T., Sekhar, M., Kumar, R., & Rajput, A. (2024). Advancing water conservation techniques in agriculture for sustainable resource management: A review. Journal of Geography, Environment and Earth Science International, 28, 41-53. https://doi.org/10.9734/jgeesi/2024/v28i3755
  39. Rohilla, K., Hari Prasad, K. S., & Ojha, C. S. P. (2016). Effect of infiltration on sediment transport in irrigated channels. Journal of Irrigation and Drainage Engineering, 142(7), 04016024. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001018
  40. Rojas-Valencia, M. N., Orta de Velásquez, M. T., & Franco, V. (2011). Urban agriculture, using sustainable practices that involve the reuse of wastewater and solid waste. Agricultural Water Management, 98(9), 1388-1394. https://doi.org/10.1016/j.agwat.2011.04.005
  41. Santos, E., Carvalho, M., & Martins, S. (2023). Sustainable water management: Understanding the socioeconomic and cultural dimensions. Sustainability, 15(17), 13074. https://doi.org/10.3390/su151713074
  42. Shang, Q., Ling, N., Feng, X., Yang, X., Wu, P., Zou, J., Shen, Q., & Guo, S. (2014). Soil fertility and its significance to crop productivity and sustainability in typical agroecosystem: A summary of long-term fertilizer experiments in China. Plant and Soil, 381, 13–23. https://doi.org/10.1007/s11104-014-2089-6
  43. Solangi, G. S., Shah, S. A., Alharbi, R. S., Panhwar, S., Keerio, H. A., Kim, T.-W., Memon, J. A., & Bughio, A. D. (2022). Investigation of irrigation water requirements for major crops using CROPWAT model based on climate data. Water, 14(16), 2578. https://doi.org/10.3390/w14162578
  44. Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 14, 111. https://doi.org/10.1186/1471-2229-14-111
  45. Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278-291. https://doi.org/10.1016/j.aiia.2021.11.004
  46. Teimoury, E., Nedaei, H., Ansari, S., & Sabbaghi, M. (2013). A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: A system dynamics approach. Computers and Electronics in Agriculture, 93, 37-45. https://doi.org/10.1016/j.compag.2013.01.010
  47. Thomas, G., Krishnakumar, V., Dhanapal, R., & Reddy, D. V. (2018). Agro-management practices for sustainable coconut production. Pp. 227-322. In Nampoothiri, K. U. K., Krishnakumar, V., Thampan, P. K., & Nair, M. A. (Editors.). The coconut palm (Cocos nucifera L.): Research and development perspectives Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-2754-4_7
  48. Velasco Muñoz, J., Aznar-Sánchez, J. A., López Felices, B., & Balacco, G. (2022). Adopting sustainable water management practices in agriculture based on stakeholder preferences. Agricultural Economics, 68, 317-326. https://doi.org/10.17221/203/2022-AGRICECON.
  49. Wang, J., Zhang, S., Sainju, U. M., Ghimire, R., & Zhao, F. (2021). A meta-analysis on cover crop impact on soil water storage, succeeding crop yield, and water-use efficiency. Agricultural Water Management, 256, 107085. https://doi.org/10.1016/j.agwat.2021.107085
  50. Waraich, E. A., Ahmad, R., Halim, A., & Aziz, T. (2012). Alleviation of temperature stress by nutrient management in crop plants: A review. Journal of Soil Science and Plant Nutrition, 12(2), 221-244. http://doi.org/10.4067/S0718-95162012000200003
  51. Wu, X., Shi, J., Zhang, T., Zuo, Q., Wang, L., Xue, X., & Ben-Gal, A. (2022). Crop yield estimation and irrigation scheduling optimization using a root-weighted soil water availability based water production function. Field Crops Research, 284, 108579. https://doi.org/10.1016/j.fcr.2022.108579
  52. Yandun, F., Reina, G., Torres-Torriti, M., Kantor, G., & Auat Cheein, F. (2017). A survey of ranging and imaging techniques for precision agriculture phenotyping. IEEE/ASME Transactions on Mechatronics, 22(6), 1-1. https://doi.org/10.1109/TMECH.2017.2760866.

Most read articles by the same author(s)