Main Article Content

Abstract

This study investigated the effect of salinity on the anatomical features of date palm (Phoenix dactylifera L.) and the potential roles of nano selenium (Se NPs) in alleviating the adverse effects of salinity. Two concentrations (80 and 160 mg.L-1) of SeNPs were applied as a foliar spray on date palms irrigated with different concentrations of saline water (2.5 [control], 5, 10 and 20 ds.m-1). Results showed that 5 ds.m-1 salinity had no significant effect on the anatomical structure of date palm, whether applied alone or in combination with foliar spray of Se NPs. However, the vascular bundle dimensions and thickness of the xylem, phloem and mesophyll were significantly higher in plants exposed to 10 ds.m-1 salinity compared with the control plants. In particular, foliar spray of SeNPs at 80 mg.L-1 concentration enhanced the effect on these plants. By contrast, 20 ds.m-1 salinity significantly reduced all studied parameters except for the thickness of the upper and lower cuticle, which increased. Se NPs at 80 mg.L-1 concentration had a significant effect in alleviating the adverse effects of salinity at high levels. The results of this study proved that SeNPs at 80 mg.L-1 concentration were more effective in alleviating the adverse effects of salinity on the anatomical structure of date palm leaves than 160 mg.L-1 concentration.

Keywords

Barhi date palm , Phoenix dactylifera L. Leaf Vessels Xylem Nano-Selenium Foliar Application Salt Stress

Article Details

How to Cite
Mahdi, A. S. ., Abd, A. M. ., & Awad, K. M. (2022). Effect of Foliar Application of Nano-selenium on the Anatomical Characteristics of Date Palm Phoenix dactylifera L. Barhi Cultivar under Salt Stress. Basrah Journal of Agricultural Sciences, 35(2), 313–325. https://doi.org/10.37077/25200860.2022.35.2.24

References

  1. Abass, M. H. (2013). Microbial contaminants of date palm (Phoenix dactylifera L.) in Iraqi tissue culture laboratories. In Emirates Journal of Food and Agriculture, 25(11), 875-882.
  2. https://doi.org/10.9755/ejfa.v25i11.15351
  3. Abd, A. M., Altemimy, I. H. H., & Altemimy, H. M. A. (2020). Evaluation of the effect of nano-fertilization and disper osmotic in treating the salinity of irrigation water on the chemical and mineral properties of date palm (Phoenix dactylifera L.). Basrah Journal of Agricultural Sciences, 33(1), 68-88.
  4. https://doi.org/10.37077/25200860.2020.33.1.06
  5. Al-Aradi, H. J., Al-Najjar, M. A., Awad, K. M., & Abass, M. H. (2020). Combination effect between lead and salinity on anatomical structure of date palm Phoenix dactylifera L. seedlings. Agrivita, 42(3), 487-498.
  6. Al-Khayri, J. M., Jain, S. M., & Johnson, D. V. (2015). Date palm genetic resources and utilization: Volume 2: Asia and Europe. Springer Dordrecht. 566pp.
  7. https://doi.org/10.1007/978-94-017-9707-8
  8. Alapresam, W. F. F., Al-Najar, M. A.-A. H., & Swaed, S. Y. (2012). Comparisons morphological and anatomical characteristics of date palm Phoenix dactylifera L. cultivars Brahi and Hillawi grown in the desert areas on the riversides of the Shatt Al-Arab. Kufa Journal for Agricultural Science, 4(1), 325-332.
  9. Alnajjar, M. A., Alpresem, W. F., & Ibrahim, M. A. (2020). Effect of amino acid proline treatment on anatomical characteristics of leaves and roots of date palm seedlings Phoenix dactylifera l. developed under saline stress conditions. Plant Archives, 20, 755-760.
  10. Atabayeva, S., Nurmahanova, A., & Minocha, S. (2013). The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology, 12(18), 2366-2377.
  11. Chang, Y. N., Zhu, C., Jiang, J., Zhang, H., Zhu, J. K., & Duan, C. G. (2020). Epigenetic regulation in plant abiotic stress responses. Journal of Integrative Plant Biology, 62(5), 563-580.
  12. https://doi.org/10.1111/jipb.12901
  13. Chauhan, R., Awasthi, S., Tripathi, P., Mishra, S., Dwivedi, S., Niranjan, A., Mallick, S., Tripathi, P., Tripathi, R. D., Chauhan, R., & Pande, V. (2017). Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.). Ecotoxicology and Environmental Safety, 138, 47-55.
  14. https://doi.org/10.1016/J.ECOENV.2016.11.015
  15. Djanaguiraman, M., Belliraj, N., Bossmann, S. H., & Prasad, P. V. V. (2018). High-temperature stress alleviation by Selenium nanoparticle treatment in grain sorghum. ACS Omega, 3(3), 2479-2491.
  16. https://doi.org/10.1021/acsomega.7b01934
  17. Etesami, H., Fatemi, H., & Rizwan, M. (2021). Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety, 225, 112769.
  18. https://doi.org/10.1016/j.ecoenv.2021.112769
  19. Fathi, A., Zahedi, M., & Torabian, S. (2017). Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L., 40(19), 2745-2755
  20. https://doi.org/10.1080/01904167.2017.1381731
  21. Golubkina, N., Zamana, S., Seredin, T., Poluboyarinov, P., Sokolov, S., Baranova, H., Krivenkov, L., Pietrantonio, L., & Caruso, G. (2019). Effect of selenium biofortification and beneficial microorganism inoculation on yield, quality and antioxidant properties of shallot bulbs. Plants, 8(4), 102.
  22. https://doi.org/10.3390/plants8040102
  23. Hameed, M., Ashraf, M., & Naz, N. (2009). Anatomical adaptations to salinity in cogon grass [Imperata cylindrica (L.) Raeuschel] from the Salt Range, Pakistan. Plant and Soil, 322(1), 229–238.
  24. https://doi.org/10.1007/s11104-009-9911-6
  25. Hazzouri, K. M., Flowers, J. M., Nelson, D., Lemansour, A., Masmoudi, K., & Amiri, K. M. A. (2020). Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Frontiers in Plant Science, 11, 293.
  26. https://doi.org/10.3389/fpls.2020.00293
  27. Hmiz, D. J., & Ithbayyib, I. J. (2021). Effect of the root zone temperature and salt stress on plant growth, main branches and some other chemical characteristics of tomato fruit Solanum lycopersicum L. cv. memory. Basrah Journal of Agricultural Sciences, 34(1), 156-170.
  28. https://doi.org/10.37077/25200860.2021.34.1.14
  29. Kaur, N., Sharma, S., Kaur, S., & Nayyar, H. (2014). Selenium in agriculture: a nutrient or contaminant for crops?, 60(12), 1593-1624.
  30. https://doi.org/10.1080/03650340.2014.918258
  31. Khalofah, A., Migdadi, H., & El‐harty, E. (2021). Antioxidant enzymatic activities and growth response of quinoa (Chenopodium quinoa Willd) to exogenous selenium application. Plants, 10(4).
  32. https://doi.org/10.3390/plants10040719
  33. Paramo, L. A., Feregrino-Pérez, A. A., Guevara, R., Mendoza, S., & Esquivel, K. (2020). Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials, 10(9), 1-33.
  34. https://doi.org/10.3390/nano10091654
  35. Pilon-Smits, E. A., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12(3), 267-274.
  36. https://doi.org/10.1016/J.PBI.2009.04.009
  37. Poljakoff-Mayber, A. (1975). Morphological and Anatomical Changes in Plants as a Response to Salinity Stress Pp, 97–117. In Poljakoff-Mayber, A., & Gale, J. (Eds.). Plants in Saline Environments. Ecological Studies, Vol. 15. Springer, Berlin, Heidelberg.
  38. https://doi.org/10.1007/978-3-642-80929-3_8
  39. Rady, M. M., Desoky, E. S. M., Ahmed, S. M., Majrashi, A., Ali, E. F., Arnaout, S. M. A. I., & Selem, E. (2021). Foliar nourishment with nano-selenium dioxide promotes physiology, biochemistry, antioxidant defenses, and salt tolerance in Phaseolus vulgaris. Plants, 10(6), 1189.
  40. https://doi.org/10.3390/plants10061189
  41. Rahmat, S., Hajiboland, R., & Sadeghzade, N. (2017). Selenium delays leaf senescence in oilseed rape plants. Photosynthetica, 55(2), 338-350.
  42. https://doi.org/10.1007/s11099-016-0643-6
  43. Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2).
  44. https://doi.org/10.3390/plants8020034
  45. Shareef, H. J., & Sweed, S. Y. (2020). Leaf and root anatomical changes of date palm Phoenix dactylifera L . Khadrawi cultivar under abiotic stress. Basrah Journal of Date Palm Research, 19(2), 23-33.
  46. Swaid, S. Y., Ali, A. H., & Abdul Zahra, E. M. (2020). Morphological responses in two palm species against the elevation of ultra violet radiation under ambient conditions. Basrah Journal of Agricultural Sciences, 33(2), 80–94.
  47. https://doi.org/10.37077/25200860.2020.33.2.07
  48. Taha, R. S., Seleiman, M. F., Shami, A., Alhammad, B. A., & Mahdi, A. H. A. (2021). Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants, 10(6), 1040.
  49. https://doi.org/10.3390/plants10061040
  50. Willey, R. (1971). Microtechniques: A laboratory guide. MacMillan Pub Co, 99pp.
  51. Zhang, L. H., Abdel-Ghany, S. E., Freeman, J. L., Ackley, A. R., Schiavon, M., & Pilon-Smits, E. A. H. (2006). Investigation of selenium tolerance mechanisms in Arabidopsis thaliana. Physiologia Plantarum, 128(2), 212–223.
  52. https://doi.org/10.1111/j.1399-3054.2006.00739.x