Main Article Content

Abstract

Cucumis melo var inodorus cv. Manis Terengganu is known as Terengganu’s iconic fruits. However, MMT production is still insufficient to satisfy local demand. Over-reliance on chemical fertilizers to MMT has reduced soil fertility, degraded soil quality resistance, and negatively affected the environment. As a result, efficient microorganisms such as Paenibacillus alvei and Bacillus toyonensis were investigated as possible ecologically compatible biofertilisers for MMT. In this study, B. toyonensis and P. alvei produced indole-3-acetic acid (IAA) at concentrations of 20.49 µg.mL-1 and 19.18 µg.mL-1, respectively. hen, the greenhouse testing was conducted to evaluate the potentiality of effective microbes as plant growth promoter rhizobacteria by introducing the soil with B. toyonensis, P. alvei, and consortium. The experiment was laid out in a randomized complete block design (RCBD) with three groups of bacteria plus the control and each treatment replicated 15 times. Data were analyzed according to ANOVA procedure. As a result, B. toyonensis, P. alvei, and consortium significantly increased in all experimental growth parameters such as plant height, leaves, chlorophyll content, root mass, root length, leaf area, fruit weight, macronutrients, and micronutrients compared to control. Overall, the results showed that the effective single microbial strains promoted the development of MMT more effectively than the consortium

Keywords

Biofertilization Cucumis melo Effective microorganisms

Article Details

How to Cite
Mohammad, M. ., Badaluddin, N. A. ., Khandaker, M. M. ., & Asri, E. A. . (2023). Potential of Bacillus toyonensis and Paenibacillus alvei as Plant Growth Promoter on Melon Manis Terengganu (MMT). Basrah Journal of Agricultural Sciences, 36(2), 109–120. https://doi.org/10.37077/25200860.2023.36.2.09

References

  1. Ali, A. M., Awad, M. Y. M., Hegab, S. A., Gawad, A. M. A. E., & Eissa, M. A. (2021). Effect of potassium solubilizing bacteria (bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition, 44(3), 411–420.
  2. https://doi.org/10.1080/01904167.2020.1822399
  3. Aziz, M., Nadipalli, R. K., Xie, X., Sun, Y., Surowiec, K., Zhang, J. L., & Paré, P. W. (2016). Augmenting sulfur metabolism and herbivore defense in arabidopsis by bacterial volatile signaling. Frontiers in Plant Science, 7, 458.
  4. https://doi.org/10.3389/fpls.2016.00458
  5. Badaluddin, N. A., Yin S. Y., Umar R, Sabri N. H., Hasshim N. S., Ali M. K., Rashad M. A. (2020). Isolation and characterization of High Ambient Electromagnetic Radiation (EMR) bacteria. Malaysian Applied Biology, 49(4), 165–172.
  6. https://doi.org/10.55230/mabjournal.v49i4.1608
  7. Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Chapter 7: Function of nutrients: micronutrients. Pp, 191-248. In: Marschner, P. (Ed.). Marschner’s Mineral Nutrition of Higher Plants, Third Edition, Academic Press.
  8. https://doi.org/10.1016/B978-0-12-384905-2.00007-8
  9. Cheng, J., Zhuang, W., Li, N. N., Tang, C. L., & Ying, H. J. (2017). Efficient biosynthesis of d-ribose using a novel co-feeding strategy in Bacillus subtilis without acid formation. Letters in Applied Microbiology, 64, 73–78.
  10. https://doi.org/10.1111/lam.12685
  11. Dalorima, T, Khandaker, M. M., Zakaria, A. J., Mohd, K. S., Sajili, M. H., Badaluddin, N. A., & Hasbullah, M. (2019). organic matter and moringa leaf extract’s effects on the physiology and fruit quality of red seedless watermelon (Citrullus lanatus). Bioscience Research, 35(5). 1560-1574
  12. https://doi.org/10.14393/BJ-v35n5a2019-49354
  13. Dechorgnat, J., Nguyen, C. T., Armengaud, P., Jossier, M., Diatloff, E., Filleur, S., & Daniel-Vedele, F. (2011). From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany, 62(4), 1349–1359.
  14. https://doi.org/10.1093/jxb/erq409
  15. Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, Article ID 963401, 15pp.
  16. http://doi.org/10.6064/2012/963401
  17. Glick, B. R., Todorovic, B., Czarny, J., Cheng, Z., Duan, J., B. McConkey. (2007). Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences, 26(5-6), 227–242.
  18. https://doi.org/10.1080/07352680701572966
  19. Holl, F. B., Chanway, C. P., Turkington, R., & Radley, R. A. (1988). Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biology and Biochemistry, 20, 19-24.
  20. https://doi.org/10.1016/0038-0717(88)90121-6
  21. Jaroszuk-Ściseł, J., Tyśkiewicz, R., Nowak, A., Ozimek, E., Majewska, M., Hanaka, A., Tyśkiewicz, K., Pawlik, A., & Janusz, G. (2019). Phytohormones (Auxin, Gibberellin) and ACC Deaminase In vitro synthesized by the mycoparasitic Trichoderma DEMTKZ3A0 Strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular Sciences, 20(19), 4923.
  22. https://doi.org/10.3390/ijms20194923
  23. Khan, N., Bano, A., Ali, S., & Babar, Md. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation. 90, 189–203.
  24. https://doi.org/10.1007/s10725-020-00571-x
  25. Knox, O. G. G., Killham, K., & Leifert, C. (2000). Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Applied Soil Ecology, 15(2), 227-231.
  26. https://doi.org/10.1016/S0929-1393(00)00098-6
  27. Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of paenibacillus polymyxa: A minireview. Indian Journal of Microbiology, 49, 2–10.
  28. https://doi.org/10.1007%2Fs12088-009-0008-y
  29. Liu, K., McInroy, J. A., Hu, C. H., & Kloepper, J. W. (2018). Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple plant diseases and plant growth promotion in the presence of pathogens. Plant Disease. 102(1), 67–72.
  30. https://doi.org/10.1094/pdis-04-17-0478-re
  31. Mandal, S., Thangarajan, R., Bolan, N. S., Sarkar, B., Khan, N., Ok, Y. S., & Naidu, R. (2016). Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat. Chemosphere, 142, 120-127.
  32. https://doi.org/10.1016/j.chemosphere.2015.04.086
  33. Masuda, T. (2008). Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynthesis Research, 96, 121-143.
  34. https://doi.org/10.1007/s11120-008-9291-4
  35. Mbarki, S., Cerdà, A., Brestic, M., Mahendra, R., Abdelly, C., & Pascual, J. A. (2017). Vineyard compost supplemented with Trichoderma harzianum T78 improve saline soil quality. Land Degradation & Development, 28(3), 1028-1037.
  36. https://doi.org/10.1002/ldr.2554
  37. Meena, V. S., Maurya, B. R., & Bahadur, I. (2014). Potassium solubilization by bacterial strain in waste mica. Bangladesh Journal of Botany, 43(2), 235–7.
  38. http://doi.org/10.3329/bjb.v43i2.21680
  39. Mejri, D., Gamalero, E., & Souissi, T. (2013). Formulation development of the deleterious Rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. Journal of Applied Microbiology, 114(1), 219-228.
  40. https://doi.org/10.1111/jam.12036
  41. Narula, N., Saharan, B. S., Kumar, V., Bhatia, R., Bishnoi, L. K., Lather, B. P. S., & Lakshminarayana, K. (2005). Impact of the use of biofertilizers on cotton (Gossypium hirsutum) crop under irrigated agro-ecosystems. Archives of Agronomy and Soil Science, 51(1), 69-77.
  42. https://doi.org/10.1080/03650340400029275
  43. Nieto-Jacobo, M. F., Steyaert, J. M., Salazar-Badillo, F. B., Nguyen, D. V., Rostás, M., Braithwaite, M., De Souza, J. T., Jimenez-Bremont, J. F., Ohkura, M., Stewart, A., & Mendoza-Mendoza, A. (2017). Environmental growth conditions of trichoderma spp. affect indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science. 8, 102.
  44. https://doi.org/10.3389/fpls.2017.00102
  45. Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D.N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6, 745.
  46. https://doi.org/10.3389/fmicb.2015.00745
  47. Portis, A. R. J. (2003). Rubisco activase – Rubisco’s catalytic chaperone. Photosynthesis Research, 75, 11-27.
  48. https://doi.org/10.1023/a:1022458108678
  49. Qian Ong, Y., & Khandakar, M. (2021). Growth and development of melon Manis Terengganu in response to seasonal variation. Asian Journal of Plant Sciences, 20(4), 659–664.
  50. https://doi.org/10.3923/ajps.2021.659.664
  51. Ribeiro, C. M., & Cardoso, E. J. (2012). Isolation, selection, and characterization of root-associated growth-promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiology Research, 167(2), 69-78.
  52. https://doi.org/10.1016/j.micres.2011.03.003
  53. Saeid, A., Prochownik, E., & Dobrowolska-Iwanek, J. (2018). Phosphorus solubilization by Bacillus species. Molecules, 23(11), 2897.
  54. https://doi.org/10.3390/molecules23112897
  55. Shamsudin, R., Azhari, N. A. A., Kasim, S., & Rahmat, M. A. S. (2021). Macro and micro-nutrients of azolla pinnata as a soilless growth media. Basrah Journal of Agricultural Sciences, 34,180–189.
  56. https://doi.org/10.37077/25200860.2021.34.sp1.18
  57. Shurigin, V., Alimov, J., Davranov, K., Gulyamova, T., & Egamberdieva, D. (2022). The Diversity of bacterial endophytes from Iris pseudacorus L. and their plant beneficial traits. Current Research in Microbial Sciences, 3, 100133.
  58. https://doi.org/10.1016%2Fj.crmicr.2022.100133
  59. Spaepen, S., & Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 3(4), a001438–a001438.
  60. https://doi.org/10.1101/cshperspect.a001438
  61. Xu, S. J., & Kim, B. S. (2014). Biocontrol of Fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology, 42(2), 158-166.
  62. https://doi.org/10.5941%2FMYCO.2014.42.2.158
  63. Yaish, M. W., Antony, I., & Glick, B. R. (2015). Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie van Leeuwenhoek. 107(6), 1519-1532.
  64. https://doi.org/10.1007/s10482-015-0445-z
  65. Yang, T., Siddique, K. H. M., & Liu, K. (2020). Cropping systems in agriculture and their impact on soil health- A review. Global Ecology and Conservation, 23, e01118.
  66. https://doi.org/10.1016/j.gecco.2020.e01118
  67. Yanti, Y., Hamid, H., Reflin, Warnita, & Habazar, T. (2019). The ability of indigenous Bacillus spp. consortia to control the anthracnose disease (Colletrotricum capsici) and increase the growth of chili plants. Biodiversitas Journal of Biological Diversity, 21(1).
  68. https://doi.org/10.13057/biodiv/d210123
  69. Zerrouk, I.Z., Rahmoune, B., Auer, S., Rößler, S., Lin, T., Baluska, F., Dobrev, P.I., Motyka, V., & Ludwig-Müller, J. (2020). Growth and Aluminum Tolerance of Maize Roots Mediated by Auxin- And Cytokinin-Producing Bacillus toyonensis Requires Polar Auxin Transport. Environmental and Experimental Botany, 176, 104064.
  70. http://doi.org/10.1016/j.envexpbot.2020.104064
  71. Zhang, H., Du, H., & Xu, Y. (2021). volatile organic compound-mediated antifungal activity of Pichia spp. and its effect on the metabolic profiles of fermentation communities. Applied and Environmental Microbiology, 87(9), e02992-20.
  72. https://doi.org/10.1128%2FAEM.02992-20

Similar Articles

You may also start an advanced similarity search for this article.