Main Article Content


Salted and unsalted Klunzinger's mullet Planiliza klunzingeri were dried using infrared halogen dryer with different temperatures (60, 65, 70, 75 and 80)°C and  different storage periods (0, 7, 14, 21, 28 and 35) days and studying their qualitative characteristics. The results showed that the moisture content decreased as drying time increased. The drying efficiency of the halogen dryer was 70.36 % at 60 °C and decreased as the drying temperature increased. Chemical composition of dried fish (salted and unsalted) showed that the moisture percentage was decreased, but the percentage of protein, fat and ash was increased after drying process. The percentage of moisture increased during the storage periods (0, 7, 14, 21, 28 and 35) days, unlike the other chemical composition percentages were decreased with increasing storage periods. The results showed that the rehydration was decreased with the increase of drying temperatures for salted and unsalted dried fish. Moreover, the results showed that there was an increase in TBA after the drying process and during the storage periods. In addition, the results revealed that the microbial content of dried salted and unsalted fish was decreased. The results illustrated that the first order model can be used to predict pH value during storage periods. Artificial neural network   (ANN) model had a good result of predicted moisture content.


Fish Planiliza klunzingeri artificial neural network halogen dryer qualitative characteristics Microbiological content

Article Details

How to Cite
Al-Rubaiy, H. H. ., Al-Shatty, , S. M. ., & Al-Hilphy, A. R. . (2020). Drying Klunzinger’s mullet fish Planiliza klunzingeri using Halogen Dryer and modeling the moisture content with artificial neural network . Basrah Journal of Agricultural Sciences, 33(1), 231–260.


  1. Aboud, S.A.; Al-Temimi, A.B.; Al-Hilphy, A.R.S.; Yi-Chen, L. & Cacciola, F. (2019). A comprehensive review on infrared heating applications in food processing. Molecules, 24(22): 4125.
  2. Achaglinkame, M.A.; Owusu-Mensah, E.; Boakye, A.A. & Oduro, I. (2020). Effect of effect of size and drying time on the rehydration and sensory properties of freeze-dried snails (Achatina achatina). Int. J. Food Sci., 2020: 1-5.
  3. Al-Bayati, M.M.A. & Ahmed, B.A. (2008). Albumin preparation and study of mullet fish chemical composition and functional properties. Diyala J. Food Tech. Humanity, 32: 242-254.
  4. Al-Fadhly, N.K.Z. (2009). Salting and drying of the Thelah fish (Scomberoides commersonianus) and studying its quality characteristics using sensory, chemical, physical and microbial indices. M. Sc. Thesis, Coll. Agric., Univ. Basrah. 195pp. (In Arabic).
  5. Al-Hilphy, A.R.; Iskandar, M.Z. & Abdul Hassan, K.H. (2011). A study of drying some vegetables and fruit by halogen oven. Kufa J. Agric. Sci., 3(2): 216-232.
  6. Al-Hilphy, A.R.S. & Al-Rikabi, A.K.J. (2013). Mathematical modelling experimental study on thin layer halogen dryer of strawberry and study it is effect on antioxidant activity. Am. J. Agri. Biol. Sci., 8(4): 268-281.
  7. Ali, A.H.; Adday, T.K. & Khamees, N.R. (2018). Catalogue of marine fishes of Iraq. Biol. Appl. Environ. Res., 2(2): 298-368.
  8. Al-Rubai’y, H.H.; Abdul Hassan, K.H. & Eskandder, M.Z. (2020). Drying and salting fish using different methods and their effect on the sensory, chemical and microbial indices. Multidiscip. Rev., 3: 1-7.
  9. Al-Shatty, S.M.H.; Al-Fadhly, N.K.Z. & Salah, Y.A. (2013). Assessing the microbiological quality of salted and dried Thelah fish (Scomberoides commersonianus). Kufa J. Agric. Sci., 5(1): 214-227.
  10. Al-Shatty, S.M.H.; Al-Gwabrawy, A.A. & Al-Hilphy, A.R.S. (2014). Study of chemical and microbiological characteristics of dried Cyprians carpio by vacuum solar dryer (Locally manufactured) (Part 2). Thi-Qar Univ. J. Agric. Res., 3(1): 341-358.
  11. Al-Temimi, A.; Aziz, S.N.; Al-Hilphy, A.R.; Lakhssassi, N.; Watson, D.G. & Ibrahim, S.A. (2019). Critical review of radio-frequency (RF) heating applications in food processing. Food Qual. Saf., 3(2): 81-91.
  12. Al-Temimi, W.K.A. (2018). Studying of physical and chemical properties and microbial content for dried fish by microwave. Diyala J. Agric. Sci., 10(1): 12-28.
  13. Andrews, W. (1992). Manuals of Food Quality Control, 4. Microbiological analysis. FAO Food and Nutrition paper No.14/4 (Rev.1), Rome: 347pp.
  14. Azam, K.; Basher, M.Z.; Ali, M.Y.; Asaduzzaman, M. & Hossain, M.M. (2003). Comparative study of organoleptic, microbiological and biochemical qualities of four selected dried fish in summer and winter. Pak. J. Biol. Sci., 6(24): 2030-2033.
  15. Boeri, C.; Neto da Silva, F.; Ferreira, J.; Saraiva, J. & Salvador, Â. (2011). Predicting the drying kinetics of salted codfish (Gadus morhua): Semi?empirical, diffusive and neural network models. Int. J. Food Sci. Technol., 46(3): 509-515.
  16. Chen, X.; Fang, F. & Wang, S. (2020). Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem. Toxicol., 137: 111115.
  17. Darvishi, H.; Azadbakht , M.; Rezaeiasl, A. & Farhang, A. (2013). Drying characteristics of sardine fish dried with microwave heating. J. Saudi Soc. Agric. Sci., 12(2): 121-127.
  18. Deng, Y.; Wang, R.; Wang, Y.; Sun, L.; Tao, S.; Li, X. & Zhao, J. (2020). Diversity and succession of microbial communities and chemical analysis in dried Lutianus erythropterus during storage. Int. J. Food Microbiol., 314: 108416.
  19. Dubey, A.; Sagar, A.; Malkani, P.; Choudhary, M.K. & Ramnath, S.S. (2020). A comprehensive review on greenhouse drying technology. J. Agric. Ecol. Res. Int., 10-20.
  20. Egan, H.; Kirk, R.S. & Sawyer, R. (1988). Pearson's Chemical Analysis of Foods. 8th ed. Longman Scientific and Technical, The Bath Press, 591pp.
  21. El-Sebaiy, L.A. & Metwalli, S.M. (1989). Changes in some chemical characteristics and lipid composition of salted bouri fish muscle (Mugil cephalus). Food Chem., 31(1): 41-50.
  22. Fath El-Bab, G.F.A. (2005). Health hazard associated with salted fish in Egyptian market. Egyp. J. Agric. Res., 83(1): 405-410.
  23. Fricke, R., Eschmeyer, W.N. & Fong, J.D. (2020). Species by family/subfamily. California: Institute for Biodiversity Science and Sustainability, California Academy of Science. Electronic version accessed 6 April 2020.
  24. Froese, R. & Pauly, D. (eds.) (2019). Fish Base. World Wide Web electronic publication. (Version 12/ 2019).
  25. Gates, K.W. (2015). Seafood processing: technology, quality and safety. J. Aquat. Food Product Technol., 24(1): 91-97.
  26. Guiné, R. (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int. J. Food Eng., 2(4): 93-100.
  27. Hardoko, H. & Utami, S. (2020). Chemical-physical properties characterization of white snapper fish skin rambak crackers based on boiling and drying duration. J. Ilmiah Perikanan dan Kelautan, 12(1): 122-130.
  28. Hernandez-Perez, J.A.; Garcia-Alvarado, M.A.; Trystram, G. & Heyd, B. (2004). Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov. Food Sci. Emerg. Technol., 5: 57-64.
  29. Huss, H.H. (1995). Quality and Quality Changes in Fresh Fish. FAO Fisheries Technical Paper, No. 348. Rome, FAO: 195pp.
  30. Kiin-Kabari, D.B. & Obasi, N. (2020). Effect of drying on the rehydration properties of some selected shellfish. Asian Food Sci. J., 14(1): 42-48.
  31. Krokida, M.K. & Morinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. J. Food Eng., 57: 1-7.
  32. Kubra, K., Hoque, M. S., Hossen, S., Husna, A.U., Azam, M., Sharker, M.R. & Ali, M. M. (2020). Fish drying and socio-economic condition of dried fish producers in the coastal region of Bangladesh. Middle-East J. Sci. Res., 28(3): 182-192.
  33. Kumar, Y. (2015). Application of microwave in food drying. Int. J. Eng. Stu. Tech. Apr., 1(6): 9-24.
  34. Lasisi, O.I.; Fapetu, O.P. & Akinola, A.O. (2020). Development of a solar dryer incorporated with a thermal storage mechanism. Dev. Int. J. Adv. Sci. Res. Eng., 6(1): 134-146.
  35. Lim, G.W.; Jafarzadeh, S. & Norazatul Hanim, M.R. (2020). Kinetic study, optimization and comparison of sun drying and superheated steam drying of asam gelugor (Garcinia cambogia). Food Res., 4(2): 396-406.
  36. Lithi, U.J.; Surovi, S.; Faridullah, M. & Roy, K.C. (2020). Effects of drying technique on the quality of Mola (Amblypharyngodon mola) dried by solar tent dryer and open sun rack dryer. Res. Agric. Livest. Fish., 7(1): 121-128.
  37. Majeed, G.H. & Al-Hilphy, A.R.S. (2007). Design of a solar dryer provided with back and heating systems and its testing in the drying of fishes and meats. J. Basrah Res., 33(3): 20-30.
  38. Mohamed, A.R.M.; Abood, A.N. & Hussein, S.A. (2016). Comparative taxonomical study of four mullet species )Mugiliformes: Mugilidae) from Iraqi marine waters, Arabian Gulf. Basrah J. Agric. Sci., 23(2): 11-23. (In Arabic).
  39. Nur, I.T.; Ghosh, B.K. & Acharjee, M. (2020). Comparative microbiological analysis of raw fishes and sun-dried fishes collected from the Kawran bazaar in Dhaka city, Bangladesh. Food Res., 4(3), 846-851.
  40. O?zilgen, M. (1998). Food Process Modeling and Control: Chemical Engineering Applications. CRC.: 518pp.
  41. Pan, Z. & Atungulu G.G. (2011). Infrared Heating for Food and Agricultural Processing. CRC Press: 300pp.
  42. Patir, B.; Gurelinanli, A.; Oksuztepe, G. & Irfan Ilhak, O. (2006). Microbiological and chemical qualities of salted grey mullet (Chalcalburnus tarichii Pallas, 1811). Int. J. Food Sci. Technol., 1(2): 91-98.
  43. Pochont, N.R.; Mohammad, M.N.; Pradeep, B.T. & Kumar, P.V. (2020). A comparative study of drying kinetics and quality of Indian red chilli in solar hybrid greenhouse drying and open sun drying. Mater. Today Proc., 21: 286-290.
  44. Rangana, S. (1976). Manual of Analysis of Fruit and Vegetable Products. 1st Edn., Tata MaGraw-Hill, New Delhi: 634pp.
  45. Rasul, M.; Majumdar, .C.; Afrin, F.; Bapary, M.A. & Shah, A.K. (2018). Biochemical, microbiological and sensory properties of dried silver carp (Hypophthalmichtys molitrix) influenced by various drying methods. Fishes, 3(3): 25. 3030025.
  46. Rossini, K.; Norena, C.P.; Cladera-Olivera, F. & Brandelli, A. (2009). Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT-Food Sci. Technol., 42(4): 862-867.
  47. Scanlin, D. (1997). The design, construction, and use of an indirect, through-pass, solar food dryer. Home Power #57: 62-72.
  48. Nath, S.; Ranjan, A.; Mohanty, B.P.; Saklani, P.; Dora, K.C. & Chowdhury, S. (2020). Dry fish and its contribution towards food and nutritional security. Food Rev. Int., 2020: 29pp.
  49. Solanki, J.B. (2020). Different types of fish drying methods in Gujarat. Int. J. Fish. Aquat. Stud., 8(1): 129-131.
  50. Stannard, C. (1997). Development and use of microbiological criteria for foods. J. Food Sci. Tech., 11(3): 137-177.
  51. Tanuja, S.; Mhatre, C.S.; Mohanty, G.; Rout, E.; Rout, P. & Srivastava, S.K. (2020). Development of low cost solar rack dryer and comparative biochemical quality evaluation of anchovies (Stolephorus commersonii) dried in sun and solar rack dryer. Int. J. Curr. Microbiol. App. Sci., 9(3): 579-586.
  52. Toledo, R.T. (2007). Fundamentals of Food Process Engineering. 1st edn., Springer, New York: 600pp.