Main Article Content

Abstract

Salted and unsalted Klunzinger's mullet Planiliza klunzingeri were dried using infrared halogen dryer with different temperatures (60, 65, 70, 75 and 80)°C and  different storage periods (0, 7, 14, 21, 28 and 35) days and studying their qualitative characteristics. The results showed that the moisture content decreased as drying time increased. The drying efficiency of the halogen dryer was 70.36 % at 60 °C and decreased as the drying temperature increased. Chemical composition of dried fish (salted and unsalted) showed that the moisture percentage was decreased, but the percentage of protein, fat and ash was increased after drying process. The percentage of moisture increased during the storage periods (0, 7, 14, 21, 28 and 35) days, unlike the other chemical composition percentages were decreased with increasing storage periods. The results showed that the rehydration was decreased with the increase of drying temperatures for salted and unsalted dried fish. Moreover, the results showed that there was an increase in TBA after the drying process and during the storage periods. In addition, the results revealed that the microbial content of dried salted and unsalted fish was decreased. The results illustrated that the first order model can be used to predict pH value during storage periods. Artificial neural network   (ANN) model had a good result of predicted moisture content.

Keywords

Fish Planiliza klunzingeri artificial neural network halogen dryer qualitative characteristics Microbiological content

Article Details

How to Cite
Al-Rubaiy, H. H. ., Al-Shatty, , S. M. ., & Al-Hilphy, A. R. . (2020). Drying Klunzinger’s mullet fish Planiliza klunzingeri using Halogen Dryer and modeling the moisture content with artificial neural network . Basrah Journal of Agricultural Sciences, 33(1), 231–260. https://doi.org/10.37077/25200860.2020.33.1.18

References

  1. Aboud, S.A.; Al-Temimi, A.B.; Al-Hilphy, A.R.S.; Yi-Chen, L. & Cacciola, F. (2019). A comprehensive review on infrared heating applications in food processing. Molecules, 24(22): 4125. https://doi.org/10.3390/molecules24224125
  2. Achaglinkame, M.A.; Owusu-Mensah, E.; Boakye, A.A. & Oduro, I. (2020). Effect of effect of size and drying time on the rehydration and sensory properties of freeze-dried snails (Achatina achatina). Int. J. Food Sci., 2020: 1-5. https://doi.org/10.1155/2020/5714140
  3. Al-Bayati, M.M.A. & Ahmed, B.A. (2008). Albumin preparation and study of mullet fish chemical composition and functional properties. Diyala J. Food Tech. Humanity, 32: 242-254. https://www.iasj.net/iasj?func=article&aId=43376
  4. Al-Fadhly, N.K.Z. (2009). Salting and drying of the Thelah fish (Scomberoides commersonianus) and studying its quality characteristics using sensory, chemical, physical and microbial indices. M. Sc. Thesis, Coll. Agric., Univ. Basrah. 195pp. (In Arabic).
  5. Al-Hilphy, A.R.; Iskandar, M.Z. & Abdul Hassan, K.H. (2011). A study of drying some vegetables and fruit by halogen oven. Kufa J. Agric. Sci., 3(2): 216-232. https://www.iasj.net/iasj?func=article&aId=12431
  6. Al-Hilphy, A.R.S. & Al-Rikabi, A.K.J. (2013). Mathematical modelling experimental study on thin layer halogen dryer of strawberry and study it is effect on antioxidant activity. Am. J. Agri. Biol. Sci., 8(4): 268-281. https://doi.org/10.3844/ajabssp.2013
  7. Ali, A.H.; Adday, T.K. & Khamees, N.R. (2018). Catalogue of marine fishes of Iraq. Biol. Appl. Environ. Res., 2(2): 298-368. https://un.uobasrah.edu.iq/papers/10391.pdf
  8. Al-Rubai’y, H.H.; Abdul Hassan, K.H. & Eskandder, M.Z. (2020). Drying and salting fish using different methods and their effect on the sensory, chemical and microbial indices. Multidiscip. Rev., 3: 1-7. https://doi.org/10.29327/multi.2020003
  9. Al-Shatty, S.M.H.; Al-Fadhly, N.K.Z. & Salah, Y.A. (2013). Assessing the microbiological quality of salted and dried Thelah fish (Scomberoides commersonianus). Kufa J. Agric. Sci., 5(1): 214-227. https://www.iasj.net/iasj?func=article&aId=65811
  10. Al-Shatty, S.M.H.; Al-Gwabrawy, A.A. & Al-Hilphy, A.R.S. (2014). Study of chemical and microbiological characteristics of dried Cyprians carpio by vacuum solar dryer (Locally manufactured) (Part 2). Thi-Qar Univ. J. Agric. Res., 3(1): 341-358. https://www.iasj.net/iasj?func=article&aId=94690
  11. Al-Temimi, A.; Aziz, S.N.; Al-Hilphy, A.R.; Lakhssassi, N.; Watson, D.G. & Ibrahim, S.A. (2019). Critical review of radio-frequency (RF) heating applications in food processing. Food Qual. Saf., 3(2): 81-91. https://doi.org/10.1093/fqsafe/fyz002
  12. Al-Temimi, W.K.A. (2018). Studying of physical and chemical properties and microbial content for dried fish by microwave. Diyala J. Agric. Sci., 10(1): 12-28. https://iasj.net/iasj?func=article&aId=161966
  13. Andrews, W. (1992). Manuals of Food Quality Control, 4. Microbiological analysis. FAO Food and Nutrition paper No.14/4 (Rev.1), Rome: 347pp. http://www.fao.org/3/T0610E/T0610E.pdf
  14. Azam, K.; Basher, M.Z.; Ali, M.Y.; Asaduzzaman, M. & Hossain, M.M. (2003). Comparative study of organoleptic, microbiological and biochemical qualities of four selected dried fish in summer and winter. Pak. J. Biol. Sci., 6(24): 2030-2033. https://doi.org/10.3923/pjbs.2003.2030.2033
  15. Boeri, C.; Neto da Silva, F.; Ferreira, J.; Saraiva, J. & Salvador, Â. (2011). Predicting the drying kinetics of salted codfish (Gadus morhua): Semi?empirical, diffusive and neural network models. Int. J. Food Sci. Technol., 46(3): 509-515. https://doi.org/10.1111/j.1365-2621.2010.02513.x
  16. Chen, X.; Fang, F. & Wang, S. (2020). Physicochemical properties and hepatoprotective effects of glycated Snapper fish scale peptides conjugated with xylose via maillard reaction. Food Chem. Toxicol., 137: 111115. https://doi.org/10.1016/j.fct.2020.111115
  17. Darvishi, H.; Azadbakht , M.; Rezaeiasl, A. & Farhang, A. (2013). Drying characteristics of sardine fish dried with microwave heating. J. Saudi Soc. Agric. Sci., 12(2): 121-127. https://doi.org/10.1016/j.jssas.2012.09.002
  18. Deng, Y.; Wang, R.; Wang, Y.; Sun, L.; Tao, S.; Li, X. & Zhao, J. (2020). Diversity and succession of microbial communities and chemical analysis in dried Lutianus erythropterus during storage. Int. J. Food Microbiol., 314: 108416. https://doi.org/10.1016/j.ijfoodmicro.2019.108416
  19. Dubey, A.; Sagar, A.; Malkani, P.; Choudhary, M.K. & Ramnath, S.S. (2020). A comprehensive review on greenhouse drying technology. J. Agric. Ecol. Res. Int., 10-20. https://doi.org/10.9734/JAERI/2020/v21i130123
  20. Egan, H.; Kirk, R.S. & Sawyer, R. (1988). Pearson's Chemical Analysis of Foods. 8th ed. Longman Scientific and Technical, The Bath Press, 591pp.
  21. El-Sebaiy, L.A. & Metwalli, S.M. (1989). Changes in some chemical characteristics and lipid composition of salted bouri fish muscle (Mugil cephalus). Food Chem., 31(1): 41-50. https://dx.doi.org//0.1016/0308-8146
  22. Fath El-Bab, G.F.A. (2005). Health hazard associated with salted fish in Egyptian market. Egyp. J. Agric. Res., 83(1): 405-410. https://doi.org/10.1016/j.jssas.2012.09.002
  23. Fricke, R., Eschmeyer, W.N. & Fong, J.D. (2020). Species by family/subfamily. California: Institute for Biodiversity Science and Sustainability, California Academy of Science. Electronic version accessed 6 April 2020. http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp
  24. Froese, R. & Pauly, D. (eds.) (2019). Fish Base. World Wide Web electronic publication. (Version 12/ 2019). http://www.fishbase.org./
  25. Gates, K.W. (2015). Seafood processing: technology, quality and safety. J. Aquat. Food Product Technol., 24(1): 91-97. https://doi.org/10.1080/10498850.2014.954475
  26. Guiné, R. (2018). The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int. J. Food Eng., 2(4): 93-100. https://doi.org/10.18178/ijfe.4.2.93-100
  27. Hardoko, H. & Utami, S. (2020). Chemical-physical properties characterization of white snapper fish skin rambak crackers based on boiling and drying duration. J. Ilmiah Perikanan dan Kelautan, 12(1): 122-130. http://doi.org/10.20473/jipk.v12i1.14842
  28. Hernandez-Perez, J.A.; Garcia-Alvarado, M.A.; Trystram, G. & Heyd, B. (2004). Neural networks for the heat and mass transfer prediction during drying of cassava and mango. Innov. Food Sci. Emerg. Technol., 5: 57-64. https://doi.org/10.1016/j.ifset.2003.10.004
  29. Huss, H.H. (1995). Quality and Quality Changes in Fresh Fish. FAO Fisheries Technical Paper, No. 348. Rome, FAO: 195pp.
  30. Kiin-Kabari, D.B. & Obasi, N. (2020). Effect of drying on the rehydration properties of some selected shellfish. Asian Food Sci. J., 14(1): 42-48. https://doi.org/10.9734/AFSJ/2020/v14i130122
  31. Krokida, M.K. & Morinos-Kouris, D. (2003). Rehydration kinetics of dehydrated products. J. Food Eng., 57: 1-7. https://doi.org/10.1016/S02608774(02)00214-5
  32. Kubra, K., Hoque, M. S., Hossen, S., Husna, A.U., Azam, M., Sharker, M.R. & Ali, M. M. (2020). Fish drying and socio-economic condition of dried fish producers in the coastal region of Bangladesh. Middle-East J. Sci. Res., 28(3): 182-192. https://doi.org/10.5829/idosi.mejsr.2020.182.192
  33. Kumar, Y. (2015). Application of microwave in food drying. Int. J. Eng. Stu. Tech. Apr., 1(6): 9-24. http://ijesta.com/upcomingissue/02.06.2015.pdf
  34. Lasisi, O.I.; Fapetu, O.P. & Akinola, A.O. (2020). Development of a solar dryer incorporated with a thermal storage mechanism. Dev. Int. J. Adv. Sci. Res. Eng., 6(1): 134-146. http://doi.org/10.31695/IJASRE.2020.33694
  35. Lim, G.W.; Jafarzadeh, S. & Norazatul Hanim, M.R. (2020). Kinetic study, optimization and comparison of sun drying and superheated steam drying of asam gelugor (Garcinia cambogia). Food Res., 4(2): 396-406. https://doi.org/10.26656/fr.2017.4(2).288
  36. Lithi, U.J.; Surovi, S.; Faridullah, M. & Roy, K.C. (2020). Effects of drying technique on the quality of Mola (Amblypharyngodon mola) dried by solar tent dryer and open sun rack dryer. Res. Agric. Livest. Fish., 7(1): 121-128. https://doi.org/10.3329/ralf.v7i1.46840
  37. Majeed, G.H. & Al-Hilphy, A.R.S. (2007). Design of a solar dryer provided with back and heating systems and its testing in the drying of fishes and meats. J. Basrah Res., 33(3): 20-30. https://www.iasj.net/iasj?func=article&aId=57643
  38. Mohamed, A.R.M.; Abood, A.N. & Hussein, S.A. (2016). Comparative taxonomical study of four mullet species )Mugiliformes: Mugilidae) from Iraqi marine waters, Arabian Gulf. Basrah J. Agric. Sci., 23(2): 11-23. (In Arabic). https://iasj.net/iasjAdmin?func=fulltext&aId=120189
  39. Nur, I.T.; Ghosh, B.K. & Acharjee, M. (2020). Comparative microbiological analysis of raw fishes and sun-dried fishes collected from the Kawran bazaar in Dhaka city, Bangladesh. Food Res., 4(3), 846-851. https://doi.org/10.26656/fr.2017.4(3).368
  40. O?zilgen, M. (1998). Food Process Modeling and Control: Chemical Engineering Applications. CRC.: 518pp. https://www.routledge.com/Handbook-of-Food-Process-Modeling-and-Statistical-QualityControl/Ozilgen/p/book/9781439814864
  41. Pan, Z. & Atungulu G.G. (2011). Infrared Heating for Food and Agricultural Processing. CRC Press: 300pp. https://www.routledge.com/Infrared-Heating-for-Food-and-Agricultural-Processing/Pan-Atungulu/p/book/9780367383787
  42. Patir, B.; Gurelinanli, A.; Oksuztepe, G. & Irfan Ilhak, O. (2006). Microbiological and chemical qualities of salted grey mullet (Chalcalburnus tarichii Pallas, 1811). Int. J. Food Sci. Technol., 1(2): 91-98. https://doi.org/10.1016/j.sjbs.2017.04.003
  43. Pochont, N.R.; Mohammad, M.N.; Pradeep, B.T. & Kumar, P.V. (2020). A comparative study of drying kinetics and quality of Indian red chilli in solar hybrid greenhouse drying and open sun drying. Mater. Today Proc., 21: 286-290. https://doi.org/10.1016/j.matpr.2019.05.433
  44. Rangana, S. (1976). Manual of Analysis of Fruit and Vegetable Products. 1st Edn., Tata MaGraw-Hill, New Delhi: 634pp.
  45. Rasul, M.; Majumdar, .C.; Afrin, F.; Bapary, M.A. & Shah, A.K. (2018). Biochemical, microbiological and sensory properties of dried silver carp (Hypophthalmichtys molitrix) influenced by various drying methods. Fishes, 3(3): 25. https://doi.org/10.3390/fishes 3030025.
  46. Rossini, K.; Norena, C.P.; Cladera-Olivera, F. & Brandelli, A. (2009). Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT-Food Sci. Technol., 42(4): 862-867. https://doi.org/10.1016/j.lwt.2019.108633
  47. Scanlin, D. (1997). The design, construction, and use of an indirect, through-pass, solar food dryer. Home Power #57: 62-72. https://www.rivendellvillage.org/Solar_Food_Dryer.pdf
  48. Nath, S.; Ranjan, A.; Mohanty, B.P.; Saklani, P.; Dora, K.C. & Chowdhury, S. (2020). Dry fish and its contribution towards food and nutritional security. Food Rev. Int., 2020: 29pp. https://doi.org/10.1080/87559129.2020.1737708
  49. Solanki, J.B. (2020). Different types of fish drying methods in Gujarat. Int. J. Fish. Aquat. Stud., 8(1): 129-131. http://www.fisheriesjournal.com/archives/?year=2020&vol=8&issue=1&part=B&ArticleId=2102
  50. Stannard, C. (1997). Development and use of microbiological criteria for foods. J. Food Sci. Tech., 11(3): 137-177. https://doi.org/10.1.1.474.2198&rep
  51. Tanuja, S.; Mhatre, C.S.; Mohanty, G.; Rout, E.; Rout, P. & Srivastava, S.K. (2020). Development of low cost solar rack dryer and comparative biochemical quality evaluation of anchovies (Stolephorus commersonii) dried in sun and solar rack dryer. Int. J. Curr. Microbiol. App. Sci., 9(3): 579-586. https://doi.org/10.20546/ijcmas.2020.903.068
  52. Toledo, R.T. (2007). Fundamentals of Food Process Engineering. 1st edn., Springer, New York: 600pp. https://www.springer.com/gp/book/9781461570523