Main Article Content

Abstract

The aim of this review was to summarize the histological, physical, chemical and microbial aspects and ways to stop the fluctuation in meat quality in addition to enhance its sensory quality using electrical stimulation. The low-voltage electrical stimulation and high-voltage electrical stimulation were employed. Electrical stimulation improves quality of poultry meat by reducing shear, increasing Sarcomere length, and reducing the diameter of muscle fibers. Low-voltage electrical stimulation affects voltages (120 volts directly in the nervous system, while high voltages were more than enough) to remove the polarization of the cover and produce a dense physio-chemical response in the muscles that had a direct effect. Electrical stimulation and injection with salts of sodium chloride and calcium chloride in the carcasses of female goats improved the tenderness of the meat. It was found that electrical stimulation accelerated the development of rigor mortis. Although electrical stimulation reduces breast meat shear, there was limited information about the effects of electrical stimulation on the other quality attributes of poultry meat and the results vary with quality attribute and differ from experimental conditions High voltage (higher than 120 volts) electrical stimulation improved meat quality and decreased the pH. Low voltages (below 120 volts) are used to ensure the safety of workers and give the desired results when used in commercial applications.

Keywords

Electrical stimulation Physical Chemical Microbial characteristics Meat tenderness

Article Details

How to Cite
Al-Hilphy, A. R. ., Al-Asadi, M. H. ., & Zhuang, H. . (2020). Effect of Electrical Stimulation on Qualitative Characteristics of Aged Chicken Carcasses: A Comprehensive Review. Basrah Journal of Agricultural Sciences, 33(1), 135–158. https://doi.org/10.37077/25200860.2020.33.1.11

References

  1. Adeyemi, K.D. & Sazili, A.Q. (2014). Efficacy of carcass electrical stimulation in meat quality enhancement: A review. Asian-Austral. J. Anim. Sci., 27(3): 447-456.https://doi.org/10.5713/ajas.2013.13463
  2. Agbeniga, B. (2018). Effects of timing and duration of low voltage electrical stimulation of light and heavy carcasses on meat quality of South African feedlot cattle. Ph. D. Thesis, Univ. Pretoria: 255pp.
  3. Aguiló-Aguayo, I.; Gangopadhyay, N.; Lyng, J.G.; Brunton, N. & Rai, D.K. (2017). Impact of pulsed light on colour, carotenoid, polyacetylene and sugar content of carrot slices. Innov. Food Sci. Emerg. Technol., 42, 49-55. https://doi.org/10.1016/j.ifset.2017.05.006
  4. Al-Fayyadh, H.A. & Naji, S.A. (1989). Poultry Product Technology.1st ed., Dar Alhekmah Press. Mosul: 626p. (In Arabic).
  5. Al-Fayyadh, H.A.; Naji, S.A.; Abdul-Hussain, S. & Al-Hajo, N.N. (2010) Poultry Products Technology. 2nd ed., Part Two, Min.High. Educ. Sci. Res., Univ.Baghdad. 292pp. (In Arabic).
  6. Al-Hmedawy, N.K.; Al-Asadi, M.H. & Al-Hilphy, A.R. (2019). Effect of electric stimulation on histological traits and color of carcasses in old duck and chicken. In IOP Conference Series: Earth Env. Sci. 388(1) 012024. IOP Publishing.
  7. Al-Hmedawy, N.K. (2019). Effect of electric stimulation on some the quality characters of meat chicken carcasses and domesticated old Ducks. M. Sc. Thesis, Coll. Agric., Univ. Basrah: 90pp. (In Arabic).
  8. Al-Hmedawy, N.K.; Al-Asadi, M.H. & Al-Hilphy, A.R. (2018). Destruction of bacteria using electric stimulation of old Duck and Chicken carcasses. Basrah J. Agric. Sci., 31(2): 31-35. https://doi.org/10.37077/25200860.2018.97 .
  9. Al-Rubaiya, A.M.S.; Al-Kaisey, M.T. & Al-Jalili, Z.F. (2006). Improvement of meat quality characteristics of aged female goats by electrical stimulation and salt solutions. Iraqi J. Biotech., 5(1): 20-37. (In Arabic).
  10. Al-Rubaiya, A.M. S.; Al-Kaisey, M.T. & Al-Jaili, Z.F. (2010). Effect of electrical stimulation and salt infusion proteins and free fatty acids content of carcasses aged female goats. Int. J. Sci. Tech., 143(595): 1-26. ?(In Arabic).
  11. Alvarado, C.Z. & Sams, A.R. (2000). The influence of post mortem electrical stimulation on rigor mortis development, calpastatin activity, and tenderness in broiler and duck pectoralis .Poult. Sci., 79: 1364-1368. https://doi.org/10.1093/ps/79.9.1364
  12. Apparao, V.; Wilfred, R.S. & Kalaikannan, A. (2009). Effect of electrical stimulation on structural characteristics of spent rabbit carcass. Global Vet., 3(4): 292-296.
  13. Asghar, A. & Pearson, A.M. (1980). Influence of ante- and postmortem treatments upon muscle composition and meat quality. Adv. Food Res., 26: 53-213. https://doi.org/10.1016/S0065-2628(08)60318-3
  14. Asghar, A.; Henrickson, R.L. & Kastner, C.L. (1983). Post?mortem stimulation of carcasses: effects on biochemistry, biophysics, microbiology, and quality of meat. CRC Crit. Rev. Food Sci. Nutri., 18(1), 1-58. https://doi.org/10.1080/10408398209527356
  15. Barba, F.J.; Ahrne, L.; Xanthakis, E. Landerslev, M.G. & Orlien, V. (2018). Innovative Technologies for Food Preservation. 25-51. In: Barba, F.J.; Sant’Ana, A. de S.; Orlien, V. & Koubaa, M. (Eds.). Innovative Technologies for Food Preservation-Inactivation of Spoilage and Pathogenic Microorganisms. Academic Press, Elsevier Inc.: 326pp. https://doi.org/10.1016/B978-0-12-811031-7.00002-9
  16. Bekhit, A.E.D.A.; Carne, A.; van de Ven, R. & Hopkins, D.L. (2016). Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Sci., 111: 139-146. https://doi.org/10.1016/j.meatsci.2015.09.001
  17. Bendall, J.R. (1980). The Electrical Stimulation of Carcass Meat Animals. 37-57 In Lawrie, R.A. (Ed.). Development in Meat Science. Vol2. Applied Science Publ.: 299pp.
  18. Bhat, Z.F.; Morton, J.D.; Mason, S.L. & Bekhit, A.E.D.A. (2018). Applied and emerging methods for meat tenderization: A comparative perspective. Comp. Rev. Food Sci. F., 17(4): 841-859. https://doi.org/10.1111/1541-4337.12356
  19. Bhat, Z.F.; Morton, J.D.; Mason, S.L. & Bekhit, A.E.D.A. (2019). Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr., 59(10): 1660-1674. https://doi.org/10.1080/10408398.2018.1425825
  20. Birkhold, S.G. & Sams, A.S. (1993). Fragmentation, tenderness, and post-mortem metabolism of early-harvestd broiler breast fillets from carcasses treated with electrical stimulation and muscle tensioning. Poultry Sci., 72: 577-582. https://doi.org/10.3382/ps.0720577.
  21. Birkhold, S.G. & Sams, A.S. (1995). Comparative ultrastructure of Pectoralis fibers from electrically stimulated and muscle tensioned broiler carcasses. Poultry Sci. 74: 194-200. https://doi.org/10.3382/ps.0740194
  22. Birkhold, S.G.; Janky, D.M. & Sams, A.S. (1992). Tenderization of early-harvested broiler breast fillets by high-voltage post-mortem electrical stimulation and muscle tensioning. Poultry Sci., 71: 2106-2112. https://doi.org/10.3382/ps.0712106.
  23. Buckow, R.; Ng, S. & Toepfl, S. (2013). Pulsed electric field processing of orange juice: A review on microbial, enzymatic, nutritional, and sensory quality and stability. Compr. Rev. Food Sci. Food Safety, 12(5): 455-467. https://doi.org/10.1111/1541-4337.12026
  24. Carse, W.A. (1973). Meat quality and the acceleration of post-mortem glycolysis by electrical stimulation. Food Technol., 8: 163. https://doi.org/10.1111/j.1365-2621.1973.tb01702.x
  25. Castaneda, M.P.; Hirschler, E.M. & Sams, A.R. (2005). Functionality of electrically stimulated broiler breast meat. Poultry Sci. 84: 479.
  26. https://doi.org/10.1093/ps/84.3.479
  27. Castro, A.; Barbosa-Canovas, G.V. & Swanson, B.G. (1993). Microbial inactivation of foods by pulsed electric fields. J. Food Process. Pres., 17: 47-73. https://doi.org/10.1111/j.1745-4549.1993.tb00225.x
  28. Cheng, J.H. & Ockerman, H.W. (2013). Effects of electrical stimulation on lipid oxidation and warmed-over flavor of precooked roast beef. Asian-Austral. J. Anim. Sci., 26(2): 282. https://doi.org/10.5713/ajas.2012.12419
  29. Contreras, S. & Harrison, D.L. (1981). Electrical stimulation and hot boning: color stability of ground beef in a model system. J. Food Sci., 46: 404. https://doi.org/10.1111/j.1365-2621.1981.tb04886.x
  30. Craig, E.W.; Fletcher, D.L. & Papinaho, P.A. (1999). The effects of ante-mortem electrical stunning and post-mortem electrical stimulation on biochemical and textural properties of broiler breast meat. Poultry Sci., 78: 490. https://doi.org/10.1093/ps/78.3.490
  31. Davey, C.L. & Winger, R.J. (1988). Muscle to Meat: Biochemical Aspect. 3-31. In: Cross, H.R & Overby, A.J. (Eds.). Meat Science, Milk Science and Technology Elsevier Sci. Publ., New York: 458pp.
  32. den Hertog-Meischke, M.J.A.; Smulders, F.J.M.; Van Logtestijn, J.G. & Van Knapen, F. (1997). The effect of electrical stimulation on the water-holding capacity and protein denaturation of two bovine muscles. J. Anim. Sci., 75: 118-124. https://doi.org/10.2527/1997.751118x
  33. Dickens, J.A. & Lyon, C.E. (1995). The effects of electric stimulation and extended chilling times on the biochemical reactions and texture of cooked broiler breast meat. Poult. Sci., 74: 2035. https://doi.org/10.3382/ps.0742035
  34. Eikelenboom, G., Smulders, F.J.M. & Ruderus, H. (1985). The effect of high and low voltage electrical stimulation on beef quality. Meat Sci., 15: 247-254. https://doi.org/ 10.1016/0309-1740(85)90080-4
  35. Fehrman, C.; Grubbs, K.; Underwood, K. & Blair, A. (2019). Impact of two levels of low voltage electrical stimulation on beef quality. Meat Muscle Biol., 3(2): 71-71.
  36. Food and Drug Administration (2000). Kinetics of microbial inactivation for alternative food processing technologies. FDA Cent. Food Saf. Appl. Nutr. report–A report of the IFT for the FDA of the US Dep. Health Human Serv. June, 2. 108pp.
  37. Froning, G.W. & Uijttenboogaart, T.G. (1988). Effect of post-mortem electrical stimulation on color, texture, pH, and cooking losses of hot and cold deboned chic-ken broiler breast meat. Poult. Sci., 67: 1536-1544. https://doi.org/10.3382/ps.0671536
  38. Gault, N.F.S.; Burns, C.; Tolland, E.L.C. & Kilpatrick, D.J. (2000). Effect some electrical stimulation variables on wing flapping, post-mortem glycolysis and eating quality characteristics of broiler Pectoralis major muscle. Br. Poult. Sci.,41: 293-299. https://doi.org/10.1080/00071660050133116
  39. Gudmundsson, M. & Hafsteinsson, H. (2001). Effect of electric field pulses on microstructure of muscle foods and roes. Trends Food Sci. Technol., 12(3-4), 122-128. https://doi.org/10.1016/S0924-2244(01)00068-1
  40. Hafid, H.; Napirah, A. & Sarifu, S.M. (2018). Effect of electrical stimulation on physical and organoleptic properties of Muscovy duck Meat. J. Ilmu Ternak dan Vet., 23(4), 202-209. http://doi.org/10.14334/jitv.v23i4.1914
  41. Haj-Saeed, B.A. (2004). The Use of Electrical Stimulation in Tenderizing Spent Hens Meat. Ph. D thesis, Coll. Agric. Univ. Baghdad: 140pp. (In Arabic).
  42. Hirschler, E.M. & Sams, A.R. (1998). The influence of commercial-scale electrical stimulation on tenderness, breast meat yield, and production costs. J. Appl. Poult. Res., 7: 99-103. https://doi.org/10.1093/japr/7.1.99
  43. Leon, K., Mery, D., Pedreschi, F., & Leon, J. (2006). Color measurement in L? a? b? units from RGB digital images. Food research international, 39(10), 1084-1091. https://doi.org/10.1016/j.foodres.2006.03.006
  44. Hulsheger, H.; Potel, J. & Niemann, E.-G. (1981). Killing of bacteria with electric pulses of high field strength. Radiat. Environ. Biophys., 20(1): 53-65. https://doi.org/10.1007/bf01323926
  45. Jassim, J.M.; Mossa, R.K.; Al-Assadi, M.H. & Gong, Y. (2011). Evaluation of physical and chemical characteristics of male and female ducks carcasses at different ages. Pak. J. Nutr., 10: 182-189.
  46. Kannan, G.; Radhakrishnan, K.T. & Shanmugam, A.M. (1991). Effect of electrical stimulation on pH, water holding capacity, and fiber diameter and sarcomere length of spent chicken carcasses. Indian Vet. J., 68: 455-459.
  47. Khan, A.W. & Nakamura, R. (1970). Effect of pre- and post-mortem glycolysis of poultry tenderness. J. Food Sci., 35: 266-267. https://doi.org/10.1111/j.1365-2621.1970.tb12157.x
  48. Khan, A.A.; Randhawa, M.A.; Carne, A.; Ahmed, I.A.M.; Barr, D.; Reid, M. & Bekhit, A.E.D.A. (2017). Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum. Innov. Food Sci. Emerg. Technol., 41, 135-143. https://doi.org/10.1016/j.ifset.2017.03.002
  49. Kim, G.D.; Jeong, J.Y.; Moon, S.H.; Hwang, Y.H.; Park, G.B. & Joo, S.T. (2008). Effects of muscle fibre type on meat characteristics of chicken and duck breast muscle. In 54th Int. Cong. Meat Sci. Technol., 54th ICoMST): 10-15.
  50. Koubaa, M.; Rosello-Soto, E.; S?ic Z?labur, J.; Rezek Jambrak, A.; Brncic, M.; Grimi, N., & Barba, F.J. (2015). Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J. Agric. Food Chem., 63(31): 6835-6846. https://doi.org/10.1021/acs.jafc.5b01994
  51. Kranen, R.W. (2003). Rapid Rigor: The way to accelerate in/line Poultry Processing. In XVI European Symp. Qual. Poult. Meat: 666-671.
  52. Lang, Y.; Sha, K.; Zhang, R.; Xie, P.; Luo, X.; Sun, B. & Liu, X. (2016). Effect of electrical stimulation and hot boning on the eating quality of Gannan yak Longissimus lumborum. Meat Sci., 112: 3-8. https://doi.org/10.1016/j.meatsci.2015.10.011
  53. Lawrie, R.A. (1958). Physiological stress in relation to dark cutting beef. J. Sci. Food, Agric., 9: 721-727. https://doi.org/10.1002/jsfa.2740091106
  54. Lawrie, R. & Ledward. D.A. (2006). The Storage and Preservation of Meat: Temperature control. 192-202. In: Ledward, D.A. (Ed.). Lawrie's Meat Science. 7th edn. Woodhead Publ. Abington Hall, Abington Cambridge: 464pp.
  55. Ledward, D.A.; Dickinson, R.F.; Powell, V.H., & Shorthose, W. R. (1986). The colour and colour stability of beef longissimus dorsi and semimembranosus muscles after effective electrical stimulation. Meat Sci., 16: 245. https://doi.org/10.1016/0309-1740(86)90037-9
  56. Li, Y.; Griffis, C. L.; Slavik, M.F.; Engler, P. V. & Wolfe, R.E. (1991). Effects of current, frequency and duty cycle on killing of Salmonella in saline water using electric signals. Appl. Eng. Agric., 7: 605.
  57. Li, Y.; Kim, J.W., Slavik, M.F.; Griffis, J.C.L.; Walker, T. & Wang, H. (1994b). Salmonella Typhimurium attached to chicken skin reduced using electrical stimulation and inorganic salts. J. Food Sci., 59, 23. https://doi.org/10.1111/j.1365-2621.1994.tb06888.x
  58. Li, Y., Siebenmorgen, T.J.; Griffis, C.L.; Wolfe, R.E.; Dake, R.L. & Webb, J.E. (1994a). Technical notes: Tenderness and its variation of broiler breast meat harvested from electrically stimulated carcasses. Trans. ASAE, 37: 223-225.
  59. Liu, T.; Dodds, E.; Leong, S.Y.; Eyres, G.T.; Burritt, D.J. & Oey, I. (2017). Effect of pulsed electric fields on the structure and frying quality of “kumara” sweet potato tubers Innov. Food Sci. Emerg. Technol., 39: 197-208. https://doi.org/10.1016/j.ifset.2016.12.010
  60. López-Campos, Ó.; Robertson, W.M.; Dugan, M.E.; Larsen, I.L.; Roberts, J.C. & Aalhus, J.L. (2018). Effect of growth promoting hormones and high voltage electrical stimulation on meat quality of finished steers. Meat Sci., 137: 288. https://doi.org/10.1016/j.meatsci.2017.08.010
  61. Lyon, B.G. & Lyon, C.E. (1991). Research note: shear value ranges by Instron Warner-Bratzler and Allo-Kramer devices that correspond to sensory tenderness. Poult. Sci., 70: 188-191. https://doi.org/10.3382/ps.0700188
  62. Lyon, C.E.; Davis, C.E.; Dickens, J.A.; Papa, C.M. & Reagan, J.O. (1989). Effect of electrical stimulation on postmortem biochemical changes and texture of broiler muscle. Poultry Sci., 68: 249-257. https://doi.org/10.3382/ps.0680249
  63. Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Faridnia, F.; Yoo, M. & Farouk, M. (2016). Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov. Food Sci. Emerg. Technol., 37: 359-374. https://doi.org/10.1016/j.ifset.2016.04.009
  64. Maki, A. & Froning, G.W. (1987). Effect of post-mortem electrical stimulation on quality of turkey meat. Poult. Sci., 66: 1155-1157. https://doi.org/10.3382/ps.0661155
  65. Mombeni, E.G.; Mombeini, M.G.; Figueiredo, L.C.; Siqueira, L.S.J. & Dias, D.T. (2013). Effects of high voltage electrical stimulation on the rate of pH decline, meat quality and color stability in chilled beef carcasses. Asian Pac. J. Trop. Biomed., 3(9): 716-719. https://doi.org/10.1016/S2221-1691(13)60144-6
  66. Mota-Rojas, D.; Roldan-Santiago, P. & Guerrero-Legarreta, I. (2012). Electrical Stimulation in Meat Processing. 323-329. In: Hui, Y.H. (Ed.). Handbook of Meat and Meat Processing. 2nd edn. CRC: 959pp.
  67. Mrigadat, B.; Smith, G.C.; Dutson, T.R.; Hall, L.C.; Hanna, M.O. & Vanderzant, C. (1980). Bacteriology of electrically stimulated rabbit, pork, lamb and beef carcasses. J. Food Prot., 43: 686. https://doi.org/10.4315/0362-028X-43.9.686
  68. Naveena, B.M. & Mendiratta, S.K. (2001). Tenderisation of spent hen meat using ginger extract. Br. Poult. Sci., 42: 344-349. https://doi.org/10.1080/00071660120055313
  69. O'Dowd, L.P.; Arimi, J.M.; Noci, F.; Cronin, D.A. & Lyng, J.G. (2013). An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Sci., 93(2): 303-309. https://doi.org/10.1016/j.meatsci.2012.09.010
  70. Offer, G. (1991). Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Sci., 30: 157-184. https://doi.org/10.1016/0309-1740(91)90005-B
  71. Owens, C.M. & Sams, A.R. (1997). Muscle metabolism and meat quality of pectoralis from turkeys treated with post-mortem electrical stimulation. Poult. Sci., 76: 1047. https://doi.org/10.1093/ps/76.7.1047
  72. Owens, C.M. & Sams, A.R. (1998). Meat quality of broiler breast meat following post-mortem electrical stimulation at the neck. Poult. Sci., 77: 1451-1454. https://doi.org/10.1093/ps/77.9.1451
  73. Palaniappan, S. & Sastry, S. (1990). Effects of electricity on microorganisms: A review. J. Food Process. Preserv., 14: 393. https://doi.org/10.1111/j.1745-4549.1990.tb00142.x
  74. Perlo, F.; Bonato, P.; Fabre, R.; Teira G. & Tisocco, O. (2012). Combined effect of electrical stimulation, aging time and marination on quality of chicken breast fillet processed under commercial conditions. J. Sci. Food Agric., 92: 2183. https://doi.org/10.1002/jsfa.5606
  75. Polidori, P. & Vincenzetti, S. (2017). The Use of Electrical Stimulation in Meat Production. 133-153 In: McCarthy, D.B. (Ed.). Meat and Meat Processing. Nova Science Publishers, Inc.: 218pp.
  76. Puértolas, E. & Barba, F.J. (2016). Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization Food Bioprod. Process., 100, 172-184. https://doi.org/10.1016/j.fbp.2016.06.020
  77. Rashid, N.H.; Henrickson, R.L.; Asghar, A. & Claypool, P.L. (1983). Biochemical and quality characteristics of ovine muscles as affected by electrical stimulation, hot boning, and mode of chilling. J. Food Sci., 48: 136-140. https://doi.org/10.1111/j.1365-2621.1983.tb14807.x
  78. Riffin, T.E.; Smith, M.A.; Bush, R.D.; Collins, D. & Hopkins. D.L. (2019). The effect of electrical stimulation and tender stretching on colour and oxidation traits of alpaca (Vicunga pacos) meat. Meat Sci. 156, 125-130. https://doi.org/10.1016/j.meatsci.2019.05.026
  79. Riley, R.R.; Savell, J.W. & Smith, G.C. (1980). Storage characteristics of wholesale and retail cuts from electrically stimulated lamb carcasses. J. Food Sci., 45: 1101-1103. https://doi.org/10.1111/j.1365-2621.1980.tb07535.x
  80. Robson, R.M.; Huff-Lonergan, E.; Parrish Jr., F.C.; Ho, C.Y.; Stromer, M.H.; Huiatt, T.W.& Sernett, S.W. (1997). Postmortem changes in the myofibrillar and other cytoskeletal proteins in muscle. In Proc. Recip. Meat Conf. 50: 43-52.
  81. Sams, A.R. (1995). Electrical stimulation at commercial line speeds. An update. Broiler Industry, 58(12): 20-23.
  82. Sams, A.R. & Dzuik, C.S. (1999). Meat quality and rigor mortis development in broiler chickens with gas-induced anoxia and postmortem electrical stimulation. Poult. Sci., 78: 1472-1476. https://doi.org/10.1093/ps/78.10.1472
  83. Savell, J.W.; Smith, G.C.; Dutson, T.R., Carpenter, Z.L. & Suter, D.A. (1977). Effect of electrical stimulation on palatability of beef, lamb and goat meat. J. Food Sci., 42: 702-706. https://doi.org/10.1111/j.1365-2621.1977.tb12583.x
  84. Slavik, M.F.; Griffis, C.L.; Li, Y. & Engler, P.V. (1990). Effect of electrical stimulation on bacterial contamination of chicken legs. J. Food Prot., 54: 508-513. https://doi.org/10.4315/0362-028X-54.7.508
  85. Taher, M.A. (1990). Meat Science. 1st ed. Min. High. Educ. Sci. Res.: 401pp. (In Arabic).
  86. Taylor, R.G.; Geesink, G.H.; Thompson, V.F.;Koohmaraie, M. & Goll, D.E. (1995). Is Z-disk degrad-ation responsible for postmortem tenderization? J. Anim. Sci., 73: 1351-1367. https://doi.org/10.2527/1995.7351351x
  87. Thompson, L.D.; Janky, D.M. & Woodward, S.A. (1987). Tenderness and physical characteristics of broiler breast fillets harvested at various times from post-mortem electrically stimulated carcasses. Poultry Sci., 66: 1158-1167. https://doi.org/10.3382/ps.0661158
  88. Toepfl, S.; Siemer, C. & Heinz, V. (2014). Effect of High-Intensity Electric Field Pulses on Solid Foods. 147-154. In Sun, D.W. (Ed.). Emerging Technologies for Food Processing Academic Press: 666pp. https://doi.org/10.1016/B978-0-12-411479-1.00008-5
  89. Tsong, T.Y. (1990). Reviews on electroporation of cell membranes and some related phenomena. Bioelectrochem. Bioenerg., 24(3): 271-295. https://doi.org/10.1016/0302-4598(90)80028-H
  90. Walkling-Ribeiro, M.; Rodríguez-González, O.; Jayaram, S.H. & Griffiths, M.W. (2011). Processing temperature, alcohol and carbonation levels and their impact on pulsed electric fields (PEF) mitigation of selected characteristic microorganisms in beer. Food Res. Int., 44(8): 2524-2533. https://doi.org/10.1016/j.foodres.2011.01.046
  91. Warriss, P.D. (2000). Meat Science. An Introductory Text School of Veterinary Science, University of Bristol, Bristol. 2nd edn. CABI Publishing: 223pp.
  92. Young, L.L. & Buhr, R.J. (2000). Effect of electrical stimulation and polyphosphate marination on drip from early -harvested, individually quick -frozen chicken breast fillets. Poultry Sci., 79: 925-927. https://doi.org/10.1093/ps/79.6.925
  93. Young, L.L. & Lyon, C.E. (1997). Effect of calcium marination on biochemical and textural properties of peri-rigor chicken breast meat. Poult. Sci., 76: 197. https://doi.org/10.1093/ps/76.1.197
  94. Young, L.L.; Buhr, R. & Lyon, C.E. (1999). Effect of polyphosphate treatment and electrical stimulation on postchill changes in quality of broiler breast meat. Poult. Sci., 78: 267. https://doi.org/10.1093/ps/78.2.267
  95. Young, L.L., Cason, J.A., Smith, D.P., Lyon, C.E., Dickens, J.A. & Walker, J.M. (2005). Effects of electrical stimulation and simulated conventional and extended chilling method on cooked chicken breast meat texture and yield. Int. J. Poult. Sci., 4(2): 60-63.
  96. Zhang, Q., Barbosa-Canovas, G.V., & Swanson, B.G. (1995). Engineering aspects of pulsed electric field pasteurisation. J. Food Eng., 25: 261-281. https://doi.org/10.1016/0260-8774(94)00030-D
  97. Zocchi, C. & Sams, A.S. (1999). Research notes: Tenderness of broiler breast fillets from carcasses treated with electrical stimulation and extended chilling times. Poultry Sci., 78 (3): 495-498. https://doi.org/10.1093/ps/78.3.495

Most read articles by the same author(s)