Main Article Content

Abstract

The most popular and efficient way for fertilization is soil application which needs to be applied in more significant quantities. Nevertheless, foliar fertilization is more practical and cost-effective in some situations. The main diagnostic methods for crop nutrients are foliar and soil fertilization tests to improve crop growth responses. Due to insufficient fertilizer application, particularly when utilizing the usual approach as a soil fertilizer addition, soil degradation will continue and become more expensive and impacting plant growth. To evaluate the influence on the maize vegetative growth, several NPK fertilizer levels were applied using foliar spraying, soil application and their combination treatments at different dosages. Experimental design was factorialal arrangement in a complete randomized block design (CRBD) with three replicates.   Data analysis using Genstat softwar (Discovery edition3). The droplet properties such as volume median diameter, droplet deposition, uniformity, and coverage percentage are influenced by the layer of the plant canopy. In addition, the main growth characteristics of maize plants were measured. The upper layers of the plant canopy are the more in the spray deposition (0.529 µl.cm-2), but the higher coverage percentage (33.36%) and the better deposition uniformity (5.54%) obtained in the bottom layers of the maize canopy. The findings demonstrate also a considerable increase in plant height, leaf number, leaf area, stem diameter, wet weight, dry weight, and percentage of N content in plants treated with foliar application and soil fertilization simultaneously (47.52cm, 14.98 leaf.plant-1, 8077, 6.06cm, 52.13gm, 14.31gm, and 2.71%) respectively. The findings imply that soil fertilization and foliar spraying can be used to enhance maize growth.

Keywords

Droplet characteristics Foliar spraying Soil fertilizer Zea mays L.

Article Details

How to Cite
Alheidary, M. H. ., Muhsin, S. J. ., & Alshummary, A. M. . (2024). Determination of the Optimal Spraying Application Rate for Improving the Vegetative Growth of Maize Crop Using Knapsack sprayer. Basrah Journal of Agricultural Sciences, 37(2), 1–16. Retrieved from https://bjas.bajas.edu.iq/index.php/bjas/article/view/1976

References

  1. Alheidary, M. H. R. (2018). Effect of the operating pressure and nozzle height on droplet properties using knapsack sprayer. The Iraqi Journal of Agricultural Sciences, 49(3), 360-366. https://doi.org/10.36103/ijas.v49i3
  2. Alheidary, M. H. R. (2019). Influence of nozzle type, working pressure, and their interaction on droplets quality using knapsack sprayer. The Iraqi Journal of Agricultural Sciences, 50(3), 857-866. https://doi.org/10.36103/ijas.v50i3
  3. Alheidary, M. H. R. (2023). Spraying technology and foliar application result in a smooth layer of the spray: a literature review. Basrah Journal of Agricultural Sciences, 36(2), 334-374. https://doi.org/10.37077/25200860.2023.36.2.25
  4. Alheidary, M. H., Al-shaheen, M. S., & Al Abdullah, S. A. (2020). The Role of Sprayer`s Characteristics and Foliar Spraying for Improving the Maize Growth and Yield. Basrah Journal of Agricultural Sciences 33(2): 182-195. https://doi.org/10.37077/25200860.2020.33.2.16
  5. Ali, A., Hussain, M., Habib, H. S., & Kiani, T. T. (2016). Foliar spray surpasses soil application of potassium for maize production under rainfed conditions. Turkish Journal of Field Crops, 21(1), 36-43. https://doi.org/ 10.17557/tjfc.66054
  6. Anburani, A. (2018). Influence of water-soluble fertilizers on growth in brinjal hybrid (Solanum melongena L.). Journal of Plant Stress Physiology 4, 1-3. https://doi.org/10.25081/jpsp.2018.v4.3413
  7. Bhattacharya, A. (2019). Changing climate and resource use efficiency in plants. Academic Press, 324pp. https://doi.org/10.1016/C2017-0-04681-5
  8. Barlog, P. S., Grzebisz, W., & Lukowiak, R. (2022). Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 11(14), 1855. https://doi.org/10.3390/plants11141855
  9. Bojtor, C., Illes, A., Mousavi, S. M. N., Szeles, A., Toth, B., Nagy, J., & Marton, C. L. (2021). Evaluation of the nutrient composition of maize in different NPK fertilizer levels based on multivariate method analysis. International Journal of Agrnomy, 2021, 5537549. https://doi.org/10.1155/2021/5537549
  10. Bourodimos, G., Koutsiaras, M., Psiroukis, V., Balafoutis, A., & Foutas, S. (2019). Development and field evaluation of a spray drift risk assessment tool for vineyard spraying application. Agriculture, 9. https://doi.org/10.3390/agriculture9080181
  11. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil, 302, 1– 17. https://doi.org/10.1007/s11104-007-9466-3 .
  12. Cui, J., & Tcherkez, G., (2021). Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry, 166, 522-530. https://doi.org/10.1016/j.plaphy.2021.06.017
  13. Deriak, J., & Abdel-Kader, S. K. A. (2015). Impact of level and methods of application of two types of nitrogen fertilizers on growth and elemental contents of Zea mays. Journal of the Advances in Agricultural Researches, 20(2), 334- 345. DOI: 10.21608/JALEXU.2015.161522
  14. Derksen, R. C., Zhu, H., & Ozkan, H. E. (2008). Determining the influence of spray quality, nozzle type, spray volume, and air-assisted application strategies on deposition of pesticides in soybean canopy. ASAE, 51, 1529–1537. https://elibrary.asabe.org/abstract.asp?aid=25301
  15. Elekhtyar, N. M., & Al-Huqail, A. A., (2023). Effect of foliar application of phosphorus, Zn, and silicon nanoparticles along with mineral NPK fertilization on yield and chemical compositions of rice (Oryza sativa L.). Agriculture, 13(5), 1061. https://doi.org/10.3390/agriculture13051061
  16. Falls, J. H., & Siegel, S.A. (2005). Fertilizers. Encyclopedia of Analytical Science, Second Edition. P: 1-8. https://doi.org/10.1016/B0-12-369397-7/00150-3
  17. FAO. (2023). Food and Agriculture Organization of the United Nations. www.fao.org
  18. Finch, H. J. S., Samuel, A. M, & Lane, G. P. F. (2014). Fertilizers and manures. Pp, 63-91. In Finch, H. J. S., Samuel, A. M, & Lane, G. P. F. (Editors). Lockhart & Wiseman’s Crop Husbandry Including Grassland, Ninth Edition. Woodhead Publishing. https://doi.org/10.1533/9781782423928.1.63
  19. Fritz, B. K, Hoffmann, W. C., Martin, D. E., & Thomson, S. J. (2007). Aerial application methods for increasing spray deposition on wheat heads. Transactions of the ASABE, 23(6), 357–364. https://elibrary.asabe.org/abstract.asp?aid=24052
  20. Gairola, S., Umar, S., & Suryapani, S. (2009). Nitrate accumulation, growth, and leaf quality of spinach beet (Beta vulgaris Linn.) as affected by NPK fertilization with special reference to potassium. Indian Journal of Science and Technology, 2(2), 35–40. https:// DOI: 10.17485/ijst/2009/v2i2.2
  21. Gorlach, B. M., Henningsen, J. N., Mackens, J. T., & Muhling, K. H. (2021). Evaluation of maize growth following early season foliar p supply of various fertilizer formulations and in relation to nutritional status. Agronomy, 11(4), 727. https://doi.org/10.3390/agronomy11040727
  22. Guimaraes-Ferreira, L., (2014). Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein, 12(1), 126-131. https://doi.org/10.1590/S1679-45082014RB2741
  23. Haytova, D. (2013). A review of foliar fertilization of some vegetable crops. Annual Research and Review in Biology, 3(4), 455-465. https://journalarrb.com/index.php/ARRB/article/view/24752
  24. He, L., Wang, G. B., Hu, T., Meng, Y. H., Yan, X. J., & Yuan H. Z. (2018). Influences of spray adjuvants and spray volume on the droplet deposition distribution with unmanned aerial vehicle (UAV) spraying on rice. Plant Protection, 44. 1046–1052.
  25. https://www.cabdirect.org/cabdirect/abstract/20183164386
  26. Kirk, I. W. (2007). Measurement and prediction of atomization parameters from fixed-wing aircraft spray nozzles. Transactions of the ASABE, 50(3), 693–703. https://elibrary.asabe.org/abstract.asp?aid=23123
  27. Lan, Y. B., & Chen, S. D. (2018). Current status and trends of plant protection UAV and its spraying technology in China. International Journal of Precision Agricultural Aviation, 1(1), 1–9. https://www.ijpaa.org/index.php/ijpaa/article/view/2/0
  28. Makinde, E. A., & Ayoola, O. T. (2010). Growth, yield and NPK uptake by maize with complementary organic and inorganic fertilizers. African Journal of Food, Agriculture, Nutrition and Development, 10(3), 2203-2217. https://www.ajol.info/index.php/ajfand/article/view/54078.
  29. Mulyati, Y., Baharuddin, A. B., & Tejowulan, R. S. (2021). Improving maize (Zea mays L.) growth and yield by the application of inorganic and organic fertilizers plus. IOP Conf. Series: Earth and Environmental Science, 712. https://iopscience.iop.org/article/10.1088/1755-1315/712/1/012027/
  30. Odongo, O. M., & Bacholt, A. J. (1995). Combining ability analysis among Kenyan and CIMMYT maize germplasm mid-altitude zone of Kenya. East African Agricultural and Forestry Journal, 61(2), 171-178.https://doi.org/10.1080/00128325.1995.11663267
  31. Ombodi, A., & Saigusa, M. (2008). Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol. Journal of Plant Nutrient, 23(10), 1485-1493. https://doi.org/10.1080/01904160009382116
  32. Peram, N., Dayal, A., Thomas, N., & Ramteke, P. W. (2018). Effect of different levels of NPK fertilizers and delayed sowing on growth, yield of maize (Zea mays L.) varieties. International Journal of Pure and applied Bioscience, 6(2), 1593-1600.
  33. Prayogo, C., Prasetya, B., & Arfarita, N. (2021). Comparative effects of the combination of biofertilizer, NPK, and mycorrhizal application on maize production system. IOP Conference Series: Earth and Enviromental Science, 905, 012003. https://iopscience.iop.org/article/10.1088/1755-1315/905/1/012003/meta.
  34. Qin, W. C., Xue, X. Y., Zhang, S. M., Gu, W., & Wang, B. K. (2018). Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. International Journal of Agricultural and Biological Engineering, 11, 27–32. https://www.ijabe.org/index.php/ijabe/article/view/3157
  35. Rai, V. (2002). Role of Amino Acids in Plant Responses to Stresses. Biologia Plantarum, 45, 481–487. https://doi.org/10.1023/A:1022308229759
  36. Romero, L. C., Aroca, M. Á., Laureano-Marín, A. M., Moreno, I., García, I., & Gotor, C. (2014). Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Molecular Plant, 7(2), 264-276. https://doi.org/10.1093/mp/sst168
  37. Rop, K., Karuku, G. N., Mbui, D., Njomo, N., & Michira, I. (2019). Evaluating the effects of formulated nano-NPK slow release fertilizer composite on the performance and yield of maize, kale and capsicum. Annals of Agricultural Sciences 64(1), 9-19. https://doi.org/10.1016/j.aoas.2019.05.010
  38. Ruttenberg, K. C., (2001). Phosphorus cycle. Pp, 2149-2162. In. Steele, J. H. (Editor). Encyclopedia of Ocean Sciences, Academic Press. https://doi.org/10.1006/rwos.2001.0277
  39. Sihombing, D., Hermanto, C., Asnita, R., Handayati, W., Sa’adah, S. Z., & Abubakar, S. (2021). Effectivenes of NPK compound (10-30-20) to improve growth and yield of hybrid maize on vertisol soil. E3S Web of Conferences 306, 01046. https://doi.org/10.1051/e3sconf/202130601046
  40. Sticker, F. C., Wearclen, D. S, & Pouli, A. W. (1961). Leaf area determination in grain sorghum Agronomy Journal, 53(3), 187-189. https://doi.org/10.2134/agronj1961.00021962005300030018x
  41. Studer, C., Hu, Y., & Schmidhalter, U. (2017). Interactive effects of N-, P- and K-nutrition and drought stress on the development of maize seedlings. Agriculture, 7, 9. https://doi.org/10.3390/agriculture7110090
  42. Sudding, A. F., Maintang, Asri, M., Rauf, A. W., Syam, A., & Adriani, A. W. (2021). The effect of NPK 15-15-6-4 compound fertilizer on corn growth and yield. IOP Conf. Series: Earth and Environmental Science, 911, 012047 https:// doi:10.1088/1755-1315/911/1/012047
  43. Sugiono, & Krismawati, A. (2020). Potency of maize production by the application of NPK (15- 10-20) fertilizer and organic fertilizer on irrigated field dry season 1. IOP Conf. Series: Earth and Environmental Science, 456. https://iopscience.iop.org/article/10.1088/1755-1315/456/1/012089
  44. Wang, G. B., Lan, Y. B., Yuan, H. Z., Qi, H. X., Chen, P. C., Ouyang, F., & Han, Y. (2019). Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers. Applied Sciences 9(2), 218. https://doi.org/10.3390/app9020218.
  45. Wierzbowska, J., Sienkiewics, S., & Swiatly, A. (2022). Yield and nitrogen status of maize (Zea mays L.) fertilized with solution of urea-ammonium nitrate enriched with P, Mg or S. Agronomy, 12, 2099. https://doi.org/10.3390/agronomy12092099
  46. Williams, C. A., & Chase, M. W. (1968). Chemical Analyses. Pp, 249-341. In Williams, C. A., & Chase, M. W. (Editors). Physical and Chemical Methods, Academic Press. Volume 2, In Methods in Immunology and Immunochemistry, 459pp. https://doi.org/10.1016/B978-1-4831-9796-8.50013-4
  47. Wulandari, P., Sulistyaningsih, E., Handayani, S., & Purwanto, B. H. (2019). Growth and yield response of maize (Zea mays L.) on acid soil to different rates of humic acid and npk fertilizer. Ilmu Pertanian (Agricultural Science) 4(2), 76-84. https://doi.org/10.22146/ipas.36680
  48. Xiao, Q., Du, R., Yang, L., Han, X., Zhao, S., Zhang, G., Fu, W., Wang, G., & Lan, Y. (2020). Comparison of droplet deposition control efficacy on Phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy, 10, 215. https://doi.org/10.3390/agronomy10020215
  49. Xue, Y, Yue, S., Zhang, W., Liu, D., Cui, Z., Chen, X., Ye, X., & Zou, C. (2014). Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize. PLoS One 9, e93895 https://doi.org/10.1371/journal.pone.0093895
  50. Zhang, H. C., Zheng, J. Q., Zhou, H. P, & Dorr, G. J. (2017). Droplet deposition distribution and off-target drift during Pesticide Spraying Operation. Transactions of the Chinese Society for Agricultural Machinery, 48(8), 114–122. https://doi.org/10.6041/j.issn.1000-1298.2017.08.012

Most read articles by the same author(s)